Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(4): 045109, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716381

RESUMO

We present a highly sensitive force-displacement transducer capable of performing ultra-shallow nanoindentation and adhesion measurements. The transducer utilizes electrostatic actuation and capacitive sensing combined with microelectromechanical fabrication technologies. Air indentation experiments report a root-mean-square (RMS) force resolution of 1.8 nN and an RMS displacement resolution of 0.019 nm. Nanoindentation experiments on a standard fused quartz sample report a practical RMS force resolution of 5 nN and an RMS displacement resolution of 0.05 nm at sub-10 nm indentation depths, indicating that the system has a very low system noise for indentation experiments. The high sensitivity and low noise enables the transducer to obtain high-resolution nanoindentation data at sub-5 nm contact depths. The sensitive force transducer is used to successfully perform nanoindentation measurements on a 14 nm thin film. Adhesion measurements were also performed, clearly capturing the pull-on and pull-off forces during approach and separation of two contacting surfaces.

2.
Opt Express ; 13(13): 5100-5, 2005 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-19498499

RESUMO

We present a way to improve the dispersion tolerance of an electrical-binary-signal-based duobinary transmitter, implemented by using a dual-arm Mach-Zehnder modulator driven with two complementary binary signals. Successful transmission over 200 km of single- mode fiber is achieved by optimizing the relative time delay between the binary signals and the driving voltage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA