Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2314426121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574017

RESUMO

Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Animais , Camundongos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Aflatoxina B1/toxicidade , Ligantes , Linfoma de Burkitt/metabolismo , Quimiocinas , Carcinogênese
3.
Nucleic Acids Res ; 51(14): 7580-7601, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37254812

RESUMO

The selenocysteine (Sec) tRNA (tRNA[Ser]Sec) governs Sec insertion into selenoproteins by the recoding of a UGA codon, typically used as a stop codon. A homozygous point mutation (C65G) in the human tRNA[Ser]Sec acceptor arm has been reported by two independent groups and was associated with symptoms such as thyroid dysfunction and low blood selenium levels; however, the extent of altered selenoprotein synthesis resulting from this mutation has yet to be comprehensively investigated. In this study, we used CRISPR/Cas9 technology to engineer homozygous and heterozygous mutant human cells, which we then compared with the parental cell lines. This C65G mutation affected many aspects of tRNA[Ser]Sec integrity and activity. Firstly, the expression level of tRNA[Ser]Sec was significantly reduced due to an altered recruitment of RNA polymerase III at the promoter. Secondly, selenoprotein expression was strongly altered, but, more surprisingly, it was no longer sensitive to selenium supplementation. Mass spectrometry analyses revealed a tRNA isoform with unmodified wobble nucleotide U34 in mutant cells that correlated with reduced UGA recoding activities. Overall, this study demonstrates the pleiotropic effect of a single C65G mutation on both tRNA phenotype and selenoproteome expression.


Assuntos
Selênio , Humanos , Códon de Terminação , Mutação , Selênio/farmacologia , Selênio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Proteoma
4.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894953

RESUMO

Zinc, an essential trace element that serves as a cofactor for numerous cellular and viral proteins, plays a central role in the dynamics of HIV-1 infection. Among the viral proteins, the nucleocapsid NCp7, which contains two zinc finger motifs, is abundantly present viral particles and plays a crucial role in coating HIV-1 genomic RNA, thus concentrating zinc within virions. In this study, we investigated whether HIV-1 virus production impacts cellular zinc homeostasis and whether isotopic fractionation occurs between the growth medium, the producing cells, and the viral particles. We found that HIV-1 captures a significant proportion of cellular zinc in the neo-produced particles. Furthermore, as cells grow, they accumulate lighter zinc isotopes from the medium, resulting in a concentration of heavier isotopes in the media, and the viruses exhibit a similar isotopic fractionation to the producing cells. Moreover, we generated HIV-1 particles in HEK293T cells enriched with each of the five zinc isotopes to assess the potential effects on the structure and infectivity of the viruses. As no strong difference was observed between the HIV-1 particles produced in the various conditions, we have demonstrated that enriched isotopes can be accurately used in future studies to trace the fate of zinc in cells infected by HIV-1 particles. Comprehending the mechanisms underlying zinc absorption by HIV-1 viral particles offers the potential to provide insights for developing future treatments aimed at addressing this specific facet of the virus's life cycle.


Assuntos
HIV-1 , Humanos , HIV-1/metabolismo , Sequência de Aminoácidos , Células HEK293 , Proteínas Virais/metabolismo , Vírion/metabolismo , RNA/metabolismo , Zinco/metabolismo , Isótopos de Zinco/metabolismo , Isótopos/metabolismo , Dedos de Zinco
5.
Nucleic Acids Res ; 48(22): 12502-12522, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33264393

RESUMO

Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.


Assuntos
COVID-19/prevenção & controle , Genoma Viral/genética , Biossíntese de Proteínas/genética , RNA Viral/genética , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Regulação Viral da Expressão Gênica , Humanos , Pandemias , SARS-CoV-2/fisiologia , Replicação Viral
6.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163318

RESUMO

The infection of CD4 T-lymphocytes with human immunodeficiency virus (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), disrupts cellular homeostasis, increases oxidative stress and interferes with micronutrient metabolism. Viral replication simultaneously increases the demand for micronutrients and causes their loss, as for selenium (Se). In HIV-infected patients, selenium deficiency was associated with a lower CD4 T-cell count and a shorter life expectancy. Selenium has an important role in antioxidant defense, redox signaling and redox homeostasis, and most of these biological activities are mediated by its incorporation in an essential family of redox enzymes, namely the selenoproteins. Here, we have investigated how selenium and selenoproteins interplay with HIV infection in different cellular models of human CD4 T lymphocytes derived from established cell lines (Jurkat and SupT1) and isolated primary CD4 T cells. First, we characterized the expression of the selenoproteome in various human T-cell models and found it tightly regulated by the selenium level of the culture media, which was in agreement with reports from non-immune cells. Then, we showed that selenium had no significant effect on HIV-1 protein production nor on infectivity, but slightly reduced the percentage of infected cells in a Jurkat cell line and isolated primary CD4 T cells. Finally, in response to HIV-1 infection, the selenoproteome was slightly altered.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Replicação Viral/fisiologia , Síndrome da Imunodeficiência Adquirida/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Glutationa Peroxidase/metabolismo , Células HEK293 , Humanos , Células Jurkat , Estresse Oxidativo/fisiologia
7.
J Biol Chem ; 295(7): 1843-1856, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31929110

RESUMO

Viruses depend on the host cell translation machinery for their replication, and one common strategy is the presence of internal ribosome entry sites (IRESs) in the viral RNAs, using different sets of host translation initiation factors. The hepatitis C virus (HCV) IRES binds eukaryotic translation initiation factor 3 (eIF3), but the exact functional role of the eIF3 complex and of its subunits remains to be precisely defined. Toward this goal, here we focused on eIF3 subunit e. We used an in vitro assay combining a ribosome-depleted rabbit reticulocyte lysate and ribosomes prepared from HeLa or Huh-7.5 cells transfected with either control or eIF3e siRNAs. eIF3e silencing reduced translation mediated by the 5'UTR of various cellular genes and HCV-like IRESs. However, this effect was not observed with the bona fide HCV IRES. Silencing of eIF3e reduced the intracellular levels of the c, d, and l subunits of eIF3 and their association with the eIF3 core subunit a. A pulldown analysis of eIF3 subunits associated with the HCV IRES disclosed similar effects and that the a subunit is critical for binding to the HCV IRES. Carrying out HCV infections of control and eIF3e-silenced Huh-7.5 cells, we found that in agreement with the in vitro findings, eIF3e silencing does not reduce HCV replication and viral protein expression. We conclude that unlike for host cellular mRNAs, the entire eIF3 is not required for HCV RNA translation, favoring viral expression under conditions of low eIF3e levels.


Assuntos
Fator de Iniciação 3 em Eucariotos/genética , Hepacivirus/genética , Hepatite C/genética , Sítios Internos de Entrada Ribossomal/genética , Animais , Linhagem Celular , Hepacivirus/patogenicidade , Hepatite C/patologia , Hepatite C/virologia , Humanos , Ligação Proteica/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Viral/química , RNA Viral/genética , Coelhos , Ribossomos/química , Ribossomos/genética , Proteínas Virais/química , Proteínas Virais/genética
8.
PLoS Pathog ; 15(10): e1008093, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600344

RESUMO

ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation. Importantly, we demonstrate that ISG20 exerts a translational control over a large panel of non-self RNA substrates including those originating from transfected DNA, while sparing endogenous transcripts. This activity correlates with the protein's ability to localize in cytoplasmic processing bodies. Finally, these functions are conserved in the ISG20 murine ortholog, whose genetic ablation results in mice with increased susceptibility to viral infection. Overall, our results posit ISG20 as an important defense factor able to discriminate the self/non-self origins of the RNA through translation modulation.


Assuntos
Antivirais/farmacologia , Exorribonucleases/farmacologia , Biossíntese de Proteínas , RNA Viral/metabolismo , Estomatite Vesicular/imunologia , Vesiculovirus/imunologia , Replicação Viral/efeitos dos fármacos , Animais , Exorribonucleases/fisiologia , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Estabilidade de RNA , RNA Viral/genética , Estomatite Vesicular/tratamento farmacológico , Estomatite Vesicular/virologia , Vesiculovirus/efeitos dos fármacos
9.
Nucleic Acids Res ; 46(21): 11539-11552, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30239828

RESUMO

Gag synthesis from the full-length unspliced mRNA is critical for the production of the viral progeny during human immunodeficiency virus type-1 (HIV-1) replication. While most spliced mRNAs follow the canonical gene expression pathway in which the recruitment of the nuclear cap-binding complex (CBC) and the exon junction complex (EJC) largely stimulates the rates of nuclear export and translation, the unspliced mRNA relies on the viral protein Rev to reach the cytoplasm and recruit the host translational machinery. Here, we confirm that Rev ensures high levels of Gag synthesis by driving nuclear export and translation of the unspliced mRNA. These functions of Rev are supported by the CBC subunit CBP80, which binds Rev and the unspliced mRNA in the nucleus and the cytoplasm. We also demonstrate that Rev interacts with the DEAD-box RNA helicase eIF4AI, which translocates to the nucleus and cooperates with the viral protein to promote Gag synthesis. Finally, we show that the Rev/RRE axis is important for the assembly of a CBP80-eIF4AI complex onto the unspliced mRNA. Together, our results provide further evidence towards the understanding of the molecular mechanisms by which Rev drives Gag synthesis from the unspliced mRNA during HIV-1 replication.


Assuntos
Fator de Iniciação 4A em Eucariotos/genética , HIV-1/genética , Complexo Proteico Nuclear de Ligação ao Cap/genética , RNA Mensageiro/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Linhagem Celular , Fator de Iniciação 4A em Eucariotos/metabolismo , HIV-1/metabolismo , Células HeLa , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Ligação Proteica , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/biossíntese , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(49): 12934-12939, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158377

RESUMO

Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.


Assuntos
Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Metilação
11.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142127

RESUMO

Epstein-Barr virus (EBV) expresses several mRNAs produced from intronless genes that could potentially be unfavorably translated compared to cellular spliced mRNAs. To overcome this situation, the virus encodes an RNA-binding protein (RBP) called EB2, which was previously found to both facilitate the export of nuclear mRNAs and increase their translational yield. Here, we show that EB2 binds both nuclear and cytoplasmic cap-binding complexes (CBC and eukaryotic initiation factor 4F [eIF4F], respectively) as well as the poly(A)-binding protein (PABP) to enhance translation initiation of a given messenger ribonucleoparticle (mRNP). Interestingly, such an effect can be obtained only if EB2 is initially bound to the native mRNPs in the nucleus. We also demonstrate that the EB2-eIF4F-PABP association renders translation of these mRNPs less sensitive to translation initiation inhibitors. Taken together, our data suggest that EB2 binds and stabilizes cap-binding complexes in order to increase mRNP translation and furthermore demonstrate the importance of the mRNP assembly process in the nucleus to promote protein synthesis in the cytoplasm.IMPORTANCE Most herpesvirus early and late genes are devoid of introns. However, it is now well documented that mRNA splicing facilitates recruitment on the mRNAs of cellular factors involved in nuclear mRNA export and translation efficiency. To overcome the absence of splicing of herpesvirus mRNAs, a viral protein, EB2 in the case of Epstein-Barr virus, is produced to facilitate the cytoplasmic accumulation of viral mRNAs. Although we previously showed that EB2 also specifically enhances translation of its target mRNAs, the mechanism was unknown. Here, we show that EB2 first is recruited to the mRNA cap structure in the nucleus and then interacts with the proteins eIF4G and PABP to enhance the initiation step of translation.


Assuntos
Fator de Iniciação Eucariótico 4G/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fosfoproteínas/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Transativadores/metabolismo , Transporte Ativo do Núcleo Celular , Citoplasma/virologia , Células HEK293 , Células HeLa , Herpesvirus Humano 4 , Humanos , Fosfoproteínas/genética , Splicing de RNA , Transporte de RNA , RNA Mensageiro/genética , Transativadores/genética
12.
Nucleic Acids Res ; 45(8): 4810-4824, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28077561

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression by recognizing and hybridizing to a specific sequence generally located in the 3΄ untranslated region (UTR) of targeted mRNAs. miRNA-induced inhibition of translation occurs during the initiation step, most probably at the level of ribosome scanning. In this process, the RNA-induced silencing complex interacts both with PABP and the 43S pre-initiation complex to disrupt scanning of the 40S ribosome. However, in some specific cases, miRNAs can stimulate translation. Although the mechanism of miRNA-mediated upregulation is unknown, it appears that the poly(A) tail and the lack of availability of the TNRC6 proteins are amongst major determinants. The genomic RNA of the Hepatitis C Virus is uncapped, non-polyadenylated and harbors a peculiar internal ribosome entry site (IRES) that binds the ribosome directly to the AUG codon. Thus, we have exploited the unique properties of the HCV IRES and other related IRESes (HCV-like) to study how translation initiation can be modulated by miRNAs on these elements. Here, we report that miRNA binding to the 3΄ UTR can stimulate translation of a reporter gene given that its expression is driven by an HCV-like IRES and that it lacks a poly(A) tail at its 3΄ extremity.


Assuntos
Hepacivirus/genética , Sítios Internos de Entrada Ribossomal/genética , MicroRNAs/genética , Iniciação Traducional da Cadeia Peptídica , Códon/genética , Regulação da Expressão Gênica , Hepatite C/genética , Hepatite C/virologia , Humanos , MicroRNAs/biossíntese , Proteína I de Ligação a Poli(A)/genética , Biossíntese de Proteínas/genética , RNA Viral/biossíntese , RNA Viral/genética , Subunidades Ribossômicas Menores de Eucariotos/genética
13.
Nucleic Acids Res ; 45(12): 7382-7400, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28449096

RESUMO

In the late phase of the HIV virus cycle, the unspliced genomic RNA is exported to the cytoplasm for the necessary translation of the Gag and Gag-pol polyproteins. Three distinct translation initiation mechanisms ensuring Gag production have been described with little rationale for their multiplicity. The Gag-IRES has the singularity to be located within Gag ORF and to directly interact with ribosomal 40S. Aiming at elucidating the specificity and the relevance of this interaction, we probed HIV-1 Gag-IRES structure and developed an innovative integrative modelling strategy to take into account all the gathered information. We propose a novel Gag-IRES secondary structure strongly supported by all experimental data. We further demonstrate the presence of two regions within Gag-IRES that independently and directly interact with the ribosome. Importantly, these binding sites are functionally relevant to Gag translation both in vitro and ex vivo. This work provides insight into the Gag-IRES molecular mechanism and gives compelling evidence for its physiological importance. It allows us to propose original hypotheses about the IRES physiological role and conservation among primate lentiviruses.


Assuntos
HIV-1/genética , Sítios Internos de Entrada Ribossomal , Iniciação Traducional da Cadeia Peptídica , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Genes Reporter , HIV-1/metabolismo , Humanos , Células Jurkat , Cinética , Luciferases/genética , Luciferases/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
14.
Int J Mol Sci ; 20(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597859

RESUMO

To replicate and disseminate, viruses need to manipulate and modify the cellular machinery for their own benefit. We are interested in translation, which is one of the key steps of gene expression and viruses that have developed several strategies to hijack the ribosomal complex. The type 1 human immunodeficiency virus is a good paradigm to understand the great diversity of translational control. Indeed, scanning, leaky scanning, internal ribosome entry sites, and adenosine methylation are used by ribosomes to translate spliced and unspliced HIV-1 mRNAs, and some require specific cellular factors, such as the DDX3 helicase, that mediate mRNA export and translation. In addition, some viral and cellular proteins, including the HIV-1 Tat protein, also regulate protein synthesis through targeting the protein kinase PKR, which once activated, is able to phosphorylate the eukaryotic translation initiation factor eIF2α, which results in the inhibition of cellular mRNAs translation. Finally, the infection alters the integrity of several cellular proteins, including initiation factors, that directly or indirectly regulates translation events. In this review, we will provide a global overview of the current situation of how the HIV-1 mRNAs interact with the host cellular environment to produce viral proteins.


Assuntos
Regulação Viral da Expressão Gênica , Infecções por HIV/virologia , HIV-1/fisiologia , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Viral/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , Splicing de RNA , RNA Mensageiro/metabolismo
15.
Biochim Biophys Acta ; 1859(5): 719-30, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27012366

RESUMO

DEAD-box RNA helicase DDX3 is a host factor essential for HIV-1 replication and thus, a potential target for novel therapies aimed to overcome viral resistance. Previous studies have shown that DDX3 promotes nuclear export and translation of the HIV-1 unspliced mRNA. Although the function of DDX3 during both processes requires its catalytic activity, it is unknown whether other domains surrounding the helicase core are involved. Here, we show the involvement of the N- and C-terminal domains of DDX3 in the regulation of HIV-1 unspliced mRNA translation. Our results suggest that the intrinsically disordered N-terminal domain of DDX3 regulates its functions in translation by acting prior to the recruitment of the 43S pre-initiation complex onto the viral 5'-UTR. Interestingly, this regulation was conserved in HIV-2 and was dependent on the CRM1-dependent nuclear export pathway suggesting a role of the RNA helicase in interconnecting nuclear export with ribosome recruitment of the viral unspliced mRNA. This specific function of DDX3 during HIV gene expression could be exploited as an alternative target for pharmaceutical intervention.


Assuntos
RNA Helicases DEAD-box/genética , Infecções por HIV/genética , HIV-1/genética , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/genética , Transporte Ativo do Núcleo Celular/genética , Regulação Viral da Expressão Gênica , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Biossíntese de Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Viral/genética , Replicação Viral/genética , Proteína Exportina 1
16.
J Mol Cell Cardiol ; 97: 213-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27133769

RESUMO

Mechanistic target of rapamycin (mTOR) is a central regulator of cell growth, proliferation, survival and metabolism, as part of mTOR complex 1 (mTORC1) and mTORC2. While partial inhibition of mTORC1 using rapamycin was shown to be cardioprotective, genetic studies in mouse models revealed that mTOR is essential for embryonic heart development and cardiac function in adults. However, the physiological role of mTOR during postnatal cardiac maturation is not fully elucidated. We have therefore generated a mouse model in which cardiac mTOR was inactivated at an early postnatal stage. Mutant mTORcmKO mice rapidly developed a dilated cardiomyopathy associated with cardiomyocyte growth defects, apoptosis and fibrosis, and died during their third week. Here, we show that reduced cardiomyocyte growth results from impaired protein translation efficiency through both 4E-BP1-dependent and -independent mechanisms. In addition, infant mTORcmKO hearts displayed markedly increased apoptosis linked to stretch-induced ANKRD1 (Ankyrin repeat-domain containing protein 1) up-regulation, JNK kinase activation and p53 accumulation. Pharmacological inhibition of p53 with pifithrin-α attenuated caspase-3 activation. Cardiomyocyte death did not result from activation of the MST1/Hippo pro-apoptotic pathway as reported in adult rictor/mTORC2 KO hearts. As well, mTORcmKO hearts showed a strong downregulation of myoglobin content, thereby leading to a hypoxic environment. Nevertheless, they lacked a HIF1α-mediated adaptive response, as mTOR is required for hypoxia-induced HIF-1α activation. Altogether, our results demonstrate that mTOR is critically required for cardiomyocyte growth, viability and oxygen supply in early postnatal myocardium and provide insight into the molecular mechanisms involved in apoptosis of mTOR-depleted cardiomyocytes.


Assuntos
Apoptose/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Biomarcadores , Biópsia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Ponte Cardiopulmonar , Modelos Animais de Doenças , Ecocardiografia , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Testes de Função Cardíaca , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Mioglobina/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Proteínas Repressoras/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Proteína Supressora de Tumor p53/metabolismo
17.
EMBO J ; 31(18): 3745-56, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22872150

RESUMO

Here, we have characterized a step in translation initiation of viral and cellular mRNAs that contain RNA secondary structures immediately at the vicinity of their m(7)GTP cap. This is mediated by the DEAD-box helicase DDX3 which can directly bind to the 5' of the target mRNA where it clamps the entry of eIF4F through an eIF4G and Poly A-binding protein cytoplasmic 1 (PABP) double interaction. This could induce limited local strand separation of the secondary structure to allow 43S pre-initiation complex attachment to the 5' free extremity of the mRNA. We further demonstrate that the requirement for DDX3 is highly specific to some selected transcripts, cannot be replaced or substituted by eIF4A and is only needed in the very early steps of ribosome binding and prior to 43S ribosomal scanning. Altogether, these data define an unprecedented role for a DEAD-box RNA helicase in translation initiation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Regulação da Expressão Gênica , Regiões 5' não Traduzidas , Motivos de Aminoácidos , Sítios de Ligação , HIV/metabolismo , Células HeLa , Humanos , Conformação de Ácido Nucleico , Proteína I de Ligação a Poli(A)/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ribossomos/química
18.
J Virol ; 89(16): 8162-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018170

RESUMO

UNLABELLED: During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. IMPORTANCE: During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Produtos do Gene gag/metabolismo , HIV-1/metabolismo , Transdução de Sinais , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Humanos , Células Jurkat , Proteínas do Tecido Nervoso/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
Arch Virol ; 161(12): 3495-3507, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27659676

RESUMO

Human immunodeficiency virus type 1 (HIV-1) unspliced mRNA drives the expression of both Gag and Gag-Pol polyproteins by using both cap- and internal ribosome entry site (IRES)-dependent translation initiation mechanisms. An IRES has been described in the matrix coding region that is involved in the production of shorter isoforms of Gag. However, up to now, this has only been shown with sequences derived from the HIV-1 laboratory strains (NL4.3 and HXB2) and never from clinical HIV-1 isolates. We have isolated ~70 sequences from HIV-1-positive patients that we have sequenced and cloned into an expression vector to monitor their ability to drive translation of Gag p55 and the shorter isoforms both in vitro and ex vivo. The results indicate that (1) the translational efficiency from the AUG-p55 varies significantly among the different isolates; (2) expression initiated at AUG-p40 codon is independent of translation initiation at the AUG-p55 triplet; and (3) all sequences promote expression of shorter Gag isoforms, in particular in Jurkat T cells, in which internal initiation occurs exclusively and directly at the AUG-p40 codon. The composition of the first ~800 nucleotides of the HIV-1 unspliced mRNA modulates the expression initiated both at the AUG-p55 and AUG-p40 codons and may impact viral production and replication. Interestingly, the AUG-p40 codon and its surrounding nucleotide context are conserved amongst clinical isolates and are used as a translation initiation site to produce a shorter Gag isoform.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , Isoformas de Proteínas/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Clonagem Molecular , Feminino , Expressão Gênica , Humanos , Células Jurkat , Masculino , Biossíntese de Proteínas , RNA Viral/genética , Análise de Sequência de DNA
20.
Biochem J ; 472(1): 111-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26349537

RESUMO

mRNA is bound to a complex network of hundreds of RNA-binding proteins (RBPs) which constitute the mature ribonucleoprotein (mRNP). Such a complex particle is initially scaffolded in the nucleus and stays associated throughout mRNA's journey to the cytoplasm, where it participates in translation. However, due to the size, complexity and variability of the mRNP, it remains technically challenging to assess its impact on translation. By designing a novel in vitro translational assay, we have been able to compare the translational efficiency of reporter mRNAs that are, or are not, associated with their cognate RBPs. This showed the strong impact of these RBPs on translational efficiency, and revealed intrinsic variations according to the structure of both the mRNA and its nuclear history, e.g. the use of intron-containing mRNA constructs showed that splicing strongly enhanced translation. The present study shows that nuclear and cytoplasmic gene expression steps in vitro are coupled in eukaryotes and this is determined from the very birth of the mRNA in the nucleus by a network of hundreds of RBPs.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Expressão Gênica , Células HeLa , Humanos , Sítios Internos de Entrada Ribossomal/genética , Luciferases/genética , Luciferases/metabolismo , Modelos Genéticos , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA