Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 62, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890518

RESUMO

BACKGROUND: Although the advent of combination anti-retroviral therapy (cART) has transformed HIV into a manageable chronic disease, an estimated 30-50% of people living with HIV (PLWH) exhibit cognitive and motor deficits collectively known as HIV-associated neurocognitive disorders (HAND). A key driver of HAND neuropathology is chronic neuroinflammation, where proinflammatory mediators produced by activated microglia and macrophages are thought to inflict neuronal injury and loss. Moreover, the dysregulation of the microbiota-gut-brain axis (MGBA) in PLWH, consequent to gastrointestinal dysfunction and dysbiosis, can lead to neuroinflammation and persistent cognitive impairment, which underscores the need for new interventions. METHODS: We performed RNA-seq and microRNA profiling in basal ganglia (BG), metabolomics (plasma) and shotgun metagenomic sequencing (colon contents) in uninfected and SIV-infected rhesus macaques (RMs) administered vehicle (VEH/SIV) or delta-9-tetrahydrocannabinol (THC) (THC/SIV). RESULTS: Long-term, low-dose THC reduced neuroinflammation and dysbiosis and significantly increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid and indole-3-propionate levels in chronically SIV-infected RMs. Chronic THC potently blocked the upregulation of genes associated with type-I interferon responses (NLRC5, CCL2, CXCL10, IRF1, IRF7, STAT2, BST2), excitotoxicity (SLC7A11), and enhanced protein expression of WFS1 (endoplasmic reticulum stress) and CRYM (oxidative stress) in BG. Additionally, THC successfully countered miR-142-3p-mediated suppression of WFS1 protein expression via a cannabinoid receptor-1-mediated mechanism in HCN2 neuronal cells. Most importantly, THC significantly increased the relative abundance of Firmicutes and Clostridia including indole-3-propionate (C. botulinum, C. paraputrificum, and C. cadaveris) and butyrate (C. butyricum, Faecalibacterium prausnitzii and Butyricicoccus pullicaecorum) producers in colonic contents. CONCLUSION: This study demonstrates the potential of long-term, low-dose THC to positively modulate the MGBA by reducing neuroinflammation, enhancing endocannabinoid levels and promoting the growth of gut bacterial species that produce neuroprotective metabolites, like indole-3-propionate. The findings from this study may benefit not only PLWH on cART, but also those with no access to cART and more importantly, those who fail to suppress the virus under cART.


Assuntos
Canabinoides , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Endocanabinoides , Propionatos/uso terapêutico , Dronabinol/uso terapêutico , Doenças Neuroinflamatórias , Eixo Encéfalo-Intestino , Macaca mulatta , Disbiose , Infecções por HIV/complicações
2.
Breast Cancer Res Treat ; 196(2): 423-437, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36114323

RESUMO

PURPOSE: Circulating blood plasma derived extracellular vesicles (BEVs) containing proteins hold promise for their use as minimally invasive biomarkers for predicting response to cancer therapy. The main goal of this study was to establish the efficiency and utility of the particle purification liquid chromatography (PPLC) BEV isolation method and evaluate the role of BEVs in predicting breast cancer (BC) patient response to neoadjuvant chemotherapy (NAC). METHODS: PPLC isolation was used to separate BEVs from non-EV contaminants and characterize BEVs from 17 BC patients scheduled to receive NAC. Using LC-MS/MS, we compared the proteome of PPLC-isolated BEVs from patients (n = 7) that achieved a pathological complete response (pCR) after NAC (responders [R]) to patients (n = 10) who did not achieve pCR (non-responders [NR]). Luminal MCF7 and basaloid MDA-MB-231 BC cells were treated with isolated BEVs and evaluated for metabolic activity by MTT assay. RESULTS: NR had elevated BEV concentrations and negative zeta potential (ζ-potential) prior to receipt of NAC. Eight proteins were enriched in BEVs of NR. GP1BA (CD42b), PECAM-1 (CD31), CAPN1, HSPB1 (HSP27), and ANXA5 were validated using western blot. MTT assay revealed BEVs from R and NR patients increased metabolic activity of MCF7 and MDA-MB-231 BC cells and the magnitude was highest in MCF7s treated with NR BEVs. CONCLUSION: PPLC-based EV isolation provides a preanalytical separation process for BEVs devoid of most contaminants. Our findings suggest that PPLC-isolated BEVs and the five associated proteins may be established as predictors of chemoresistance, and thus serve to identify NR to spare them the toxic effects of NAC.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteômica , Cromatografia Líquida , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Proteoma , Proteínas de Choque Térmico HSP27/uso terapêutico , Espectrometria de Massas em Tandem , Terapia Neoadjuvante/métodos , Plasma
3.
J Neuroinflammation ; 19(1): 225, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096938

RESUMO

BACKGROUND: Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown. METHODS: We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells. RESULTS: Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners. CONCLUSIONS: Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.


Assuntos
Vesículas Extracelulares , MicroRNAs , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Dronabinol/farmacologia , Vesículas Extracelulares/metabolismo , Humanos , Macaca mulatta/genética , Macaca mulatta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , MicroRNAs/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico
4.
Cell Mol Life Sci ; 79(1): 5, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936021

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are regulators of cell-cell interactions and mediators of horizontal transfer of bioactive molecules between cells. EV-mediated cell-cell interactions play roles in physiological and pathophysiological processes, which maybe modulated by exposure to pathogens and cocaine use. However, the effect of pathogens and cocaine use on EV composition and function are not fully understood. RESULTS: Here, we used systems biology and multi-omics analysis to show that HIV infection (HIV +) and cocaine (COC) use (COC +) promote the release of semen-derived EVs (SEV) with dysregulated extracellular proteome (exProtein), miRNAome (exmiR), and exmiR networks. Integrating SEV proteome and miRNAome revealed a significant decrease in the enrichment of disease-associated, brain-enriched, and HIV-associated miR-128-3p (miR-128) in HIV + COC + SEV with a concomitant increase in miR-128 targets-PEAK1 and RND3/RhoE. Using two-dimensional-substrate single cell haptotaxis, we observed that in the presence of HIV + COC + SEV, contact guidance provided by the extracellular matrix (ECM, collagen type 1) network facilitated far-ranging haptotactic cues that guided monocytes over longer distances. Functionalizing SEV with a miR-128 mimic revealed that the strategic changes in monocyte haptotaxis are in large part the result of SEV-associated miR-128. CONCLUSIONS: We propose that compositionally and functionally distinct HIV + COC + and HIV-COC- SEVs and their exmiR networks may provide cells relevant but divergent haptotactic guidance in the absence of chemotactic cues, under both physiological and pathophysiological conditions.


Assuntos
Quimiotaxia , Cocaína/farmacologia , Vesículas Extracelulares/metabolismo , Infecções por HIV/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Proteoma/metabolismo , Sêmen/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Comorbidade , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Adulto Jovem
5.
Mol Cell Proteomics ; 19(1): 78-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676584

RESUMO

Blood and semen are important body-fluids that carry exosomes for bioinformation transmission. Therefore, characterization of their proteomes is necessary for understanding body-fluid-specific physiologic and pathophysiologic functions. Using systematic multifactorial proteomic profiling, we characterized the proteomes of exosomes and exosome-free fractions from autologous blood and semen from three HIV-uninfected and three HIV-infected participants (total of 24 samples). We identified exosome-based protein signatures specific to blood and semen along with HIV-induced tissue-dependent proteomic perturbations. We validated our findings with samples from 16 additional donors and showed that unlike blood exosomes (BE), semen exosomes (SE) are enriched in clusterin. SE but not BE promote Protein·Nucleic acid binding and increase cell adhesion irrespective of HIV infection. This is the first comparative study of the proteome of autologous BE and SE. The proteins identified may be developed as biomarkers applicable to different fields of medicine, including reproduction and infectious diseases.


Assuntos
Sangue/metabolismo , Exossomos/metabolismo , Infecções por HIV/metabolismo , HIV-1/genética , Proteoma , Proteômica/métodos , Sêmen/metabolismo , Adulto , Biomarcadores/metabolismo , Infecções por HIV/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , RNA Viral/genética , Adulto Jovem
6.
Breast Cancer Res ; 23(1): 76, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315513

RESUMO

BACKGROUND: Doxorubicin (Dox) is a widely used chemotherapy, but its effectiveness is limited by dose-dependent side effects. Although lower Dox doses reduce this risk, studies have reported higher recurrence of local disease with no improvement in survival rate in patients receiving low doses of Dox. To effectively mitigate this, a better understanding of the adverse effects of suboptimal Dox doses is needed. METHODS: Effects of sublethal dose of Dox on phenotypic changes were assessed with light and confocal microscopy. Migratory and invasive behavior were assessed by wound healing and transwell migration assays. MTT and LDH release assays were used to analyze cell growth and cytotoxicity. Flow cytometry was employed to detect cell surface markers of cancer stem cell population. Expression and activity of matrix metalloproteinases were probed with qRT-PCR and zymogen assay. To identify pathways affected by sublethal dose of Dox, exploratory RNAseq was performed and results were verified by qRT-PCR in multiple cell lines (MCF7, ZR75-1 and U-2OS). Regulation of Src Family kinases (SFK) by key players in DNA damage response was assessed by siRNA knockdown along with western blot and qRT-PCR. Dasatinib and siRNA for Fyn and Yes was employed to inhibit SFKs and verify their role in increased migration and invasion in MCF7 cells treated with sublethal doses of Dox. RESULTS: The results show that sublethal Dox treatment leads to increased migration and invasion in otherwise non-invasive MCF7 breast cancer cells. Mechanistically, these effects were independent of the epithelial mesenchymal transition, were not due to increased cancer stem cell population, and were not observed with other chemotherapies. Instead, sublethal Dox induces expression of multiple SFK-including Fyn, Yes, and Src-partly in a p53 and ATR-dependent manner. These effects were validated in multiple cell lines. Functionally, inhibiting SFKs with Dasatinib and specific downregulation of Fyn suppressed Dox-induced migration and invasion of MCF7 cells. CONCLUSIONS: Overall, this study demonstrates that sublethal doses of Dox activate a pro-invasive, pro-migration program in cancer cells. Furthermore, by identifying SFKs as key mediators of these effects, our results define a potential therapeutic strategy to mitigate local invasion through co-treatment with Dasatinib.


Assuntos
Movimento Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Quinases da Família src/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Relação Dose-Resposta a Droga , Feminino , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Quinases da Família src/antagonistas & inibidores
7.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751379

RESUMO

Although celiac disease (CD) is an autoimmune disease that primarily involves the intestinal tract, mounting evidence suggests that a sizeable number of patients exhibit neurological deficits. About 40% of the celiac patients with neurological manifestations have circulating antibodies against neural tissue transglutaminase-6 (tTG6). While early diagnosis and strict adherence to a gluten-free diet (GFD) have been recommended to prevent neurological dysfunction, better therapeutic strategies are needed to improve the overall quality of life. Dysregulation of the microbiota-gut-brain axis, presence of anti-tTG6 antibodies, and epigenetic mechanisms have been implicated in the pathogenesis. It is also possible that circulating or gut-derived extracellular structures and including biomolecular condensates and extracellular vesicles contribute to disease pathogenesis. There are several avenues for shaping the dysregulated gut homeostasis in individuals with CD, non-celiac gluten sensitivity (NCGS) and/or neurodegeneration. In addition to GFD and probiotics, nutraceuticals, such as phyto and synthetic cannabinoids, represent a new approach that could shape the host microbiome towards better prognostic outcomes. Finally, we provide a data-driven rationale for potential future pre-clinical research involving non-human primates (NHPs) to investigate the effect of nutraceuticals, such as phyto and synthetic cannabinoids, either alone or in combination with GFD to prevent/mitigate dietary gluten-induced neurodegeneration.


Assuntos
Canabinoides/uso terapêutico , Doença Celíaca/terapia , Dieta Livre de Glúten/métodos , Disbiose/terapia , Doenças Neurodegenerativas/prevenção & controle , Probióticos/uso terapêutico , Autoanticorpos/sangue , Doença Celíaca/diagnóstico , Doença Celíaca/imunologia , Doença Celíaca/microbiologia , Suplementos Nutricionais , Disbiose/diagnóstico , Disbiose/imunologia , Disbiose/microbiologia , Diagnóstico Precoce , Epigênese Genética , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Glutens/efeitos adversos , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/microbiologia , Proteína 2 Glutamina gama-Glutamiltransferase , Qualidade de Vida , Transglutaminases/antagonistas & inibidores , Transglutaminases/genética , Transglutaminases/imunologia
8.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731547

RESUMO

Acellular particles (extracellular vesicles and membraneless condensates) have important research, drug discovery, and therapeutic implications. However, their isolation and retrieval have faced enormous challenges, impeding their use. Here, a novel size-guided particle purification liquid chromatography (PPLC) is integrated into a turbidimetry-enabled system for dye-free isolation, online characterization, and retrieval of intact acellular particles from biofluids. The chromatographic separation of particles from different biofluids-semen, blood, urine, milk, and cell culture supernatants-is achieved using a first-in-class gradient size exclusion column (gSEC). Purified particles are collected using a fraction collector. Online UV-Vis monitoring reveals biofluid-dependent particle spectral differences, with semen being the most complex. Turbidimetry provides the accurate physical characterization of seminal particle (Sp) lipid contents, sizes, and concentrations, validated by a nanoparticle tracking analysis, transmission electron microscopy, and naphthopyrene assay. Furthermore, different fractions of purified Sps contain distinct DNA, RNA species, and protein compositions. The integration of Sp physical and compositional properties identifies two archetypal membrane-encased seminal extracellular vesicles (SEV)-notably SEV large (SEVL), SEV small (SEVS), and a novel nonarchetypalµµembraneless Sps, herein named membraneless condensates (MCs). This study demonstrates a comprehensive yet affordable platform for isolating, collecting, and analyzing acellular particles to facilitate extracellular particle research and applications in drug delivery and therapeutics. Ongoing efforts focus on increased resolution by tailoring bead/column chemistry for each biofluid type.


Assuntos
Vesículas Extracelulares/química , Cromatografia Líquida , Humanos , Masculino , Nefelometria e Turbidimetria , Sêmen
9.
Molecules ; 25(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155736

RESUMO

Inhibition of cancer cell adhesion is an effective approach to killing adherent cancer cells. B49 and its analog B49Mod1 peptides, derived from the extracellular domain (ECD) of bone marrow stromal antigen 2 (BST-2), display anti-adhesion activity on breast cancer cells. However, the minimal sequence required for this anti-adhesion activity is unknown. Here, we further characterized the anti-adhesion activity of B49Mod1. We show that the anti-adhesion activity of B49Mod1 may require cysteine-linked disulfide bond and that the peptide is susceptible to proteolytic deactivation. Using structure-activity relationship studies, we identified an 18-Mer sequence (B18) as the minimal peptide sequence mediating the anti-adhesion activity of B49Mod1. Atomistic molecular dynamic (MD) simulations reveal that B18 forms a stable complex with the ECD of BST-2 in aqueous solution. MD simulations further reveal that B18 may cause membrane defects that facilitates peptide translocation across the bilayer. Placement of four B18 chains as a transmembrane bundle results in water channel formation, indicating that B18 may impair membrane integrity and form pores. We hereby identify B18 as the minimal peptide sequence required for the anti-adhesion activity of B49Mod1 and provide atomistic insight into the interaction of B18 with BST-2 and the cell membrane.


Assuntos
Adesão Celular/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Dissulfetos/química , Humanos , Bicamadas Lipídicas/química , Modelos Moleculares , Conformação Proteica , Proteólise , Relação Estrutura-Atividade
10.
J Gen Virol ; 100(3): 350-366, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30702421

RESUMO

The terms extracellular vesicles, microvesicles, oncosomes, or exosomes are often used interchangeably as descriptors of particles that are released from cells and comprise a lipid membrane that encapsulates nucleic acids and proteins. Although these entities are defined based on a specific size range and/or mechanism of release, the terminology is often ambiguous. Nevertheless, these vesicles are increasingly recognized as important modulators of intercellular communication. The generic characterization of extracellular vesicles could also be used as a descriptor of enveloped viruses, highlighting the fact that extracellular vesicles and enveloped viruses are similar in both composition and function. Their high degree of similarity makes differentiating between vesicles and enveloped viruses in biological specimens particularly difficult. Because viral particles and extracellular vesicles are produced simultaneously in infected cells, it is necessary to separate these populations to understand their independent functions. We summarize current understanding of the similarities and differences of extracellular vesicles, which henceforth we will refer to as exosomes, and the enveloped retrovirus, HIV-1. Here, we focus on the presence of these particles in semen, as these are of particular importance during HIV-1 sexual transmission. While there is overlap in the terminology and physical qualities between HIV-1 virions and exosomes, these two types of intercellular vehicles may differ depending on the bio-fluid source. Recent data have demonstrated that exosomes from human semen serve as regulators of HIV-1 infection that may contribute to the remarkably low risk of infection per sexual exposure.


Assuntos
Exossomos/virologia , Vesículas Extracelulares/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Animais , Exossomos/metabolismo , Infecções por HIV/metabolismo , HIV-1/genética , Humanos
11.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111566

RESUMO

Exosomes play various roles in host responses to cancer and infective agents, and semen exosomes (SE) inhibit HIV-1 infection and transmission, although the mechanism(s) by which this occurs is unclear. Here, we show that SE block HIV-1 proviral transcription at multiple transcriptional checkpoints, including transcription factor recruitment to the long terminal repeat (LTR), transcription initiation, and elongation. Biochemical and functional studies show that SE inhibit HIV-1 LTR-driven viral gene expression and virus replication. Through partitioning of the HIV-1 RNA, we found that SE reduced the optimal expression of various viral RNA species. Chromatin immunoprecipitation-real-time quantitative PCR (ChIP-RT-qPCR) and electrophoretic mobility shift assay (EMSA) analysis of infected cells identified the human transcription factors NF-κB and Sp1, as well as RNA polymerase (Pol) II and the viral protein transcriptional activator (Tat), as targets of SE. Of interest, SE inhibited HIV-1 LTR activation mediated by HIV-1 or Tat, but not by the mitogen phorbol myristate acetate (PMA) or tumor necrosis factor alpha (TNF-α). SE inhibited the DNA binding activities of NF-κB and Sp1 and blocked the recruitment of these transcription factors and Pol II to the HIV-1 LTR promoter. Importantly, SE directly blocked NF-κB, Sp1, and Pol II binding to the LTR and inhibited the interactions of Tat/NF-κB and Tat/Sp1, suggesting that SE-mediated inhibition of the functional quadripartite complex NF-κB-Sp1-Pol II-Tat may be a novel mechanism of proviral transcription repression. These data provide a novel molecular basis for SE-mediated inhibition of HIV-1 and identify Tat as a potential target of SE.IMPORTANCE HIV is most commonly transmitted sexually, and semen is the primary vector. Despite progress in studies of HIV pathogenesis and the success of combination antiretroviral therapy in controlling viral replication, current therapy cannot completely control sexual transmission. Thus, there is a need to identify effective methods of controlling HIV replication and transmission. Recently, it was shown that human semen contains exosomes that protect against HIV infection in vitro In this study, we identified a mechanism by which semen exosomes inhibited HIV-1 RNA expression. We found that semen exosomes inhibit recruitment of transcription factors NF-κB and Sp1, as well as RNA Pol II, to the promoter region in the 5' long terminal repeat (LTR) of HIV-1. The HIV-1 early protein transcriptional activator (Tat) was a target of semen exosomes, and semen exosomes inhibited the binding and recruitment of Tat to the HIV-1 LTR.


Assuntos
Exossomos/metabolismo , Infecções por HIV/genética , HIV-1/genética , NF-kappa B/metabolismo , Sêmen/metabolismo , Fator de Transcrição Sp1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Exossomos/genética , Regulação Viral da Expressão Gênica , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Repetição Terminal Longa de HIV/genética , Humanos , Masculino , NF-kappa B/genética , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fator de Transcrição Sp1/genética , Transcrição Gênica , Ativação Transcricional , Replicação Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
12.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875238

RESUMO

Lassa virus (LASV) is an Old World arenavirus responsible for hundreds of thousands of infections in West Africa every year. LASV entry into a variety of cell types is mediated by interactions with glycosyltransferase LARGE-modified O-linked glycans present on the ubiquitous receptor α-dystroglycan (αDG). However, cells lacking αDG are permissive to LASV infection, suggesting that alternative receptors exist. Previous studies demonstrated that the phosphatidylserine (PtdSer)-binding receptors Axl and Tyro3 along with C-type lectin receptors mediate αDG-independent entry. Here, we demonstrate that another PtdSer receptor, TIM-1, mediates LASV glycoprotein (GP)-pseudotyped virion entry into αDG-knocked-out HEK 293T and wild-type (WT) Vero cells, which express αDG lacking appropriate glycosylation. To investigate the mechanism by which TIM-1 mediates enhancement of entry, we demonstrate that mutagenesis of the TIM-1 IgV domain PtdSer-binding pocket abrogated transduction. Furthermore, the human TIM-1 IgV domain-binding monoclonal antibody ARD5 blocked transduction of pseudovirions bearing LASV GP in a dose-dependent manner. Finally, as we showed previously for other viruses that use TIM-1 for entry, a chimeric TIM-1 protein that substitutes the proline-rich region (PRR) from murine leukemia virus envelope (Env) for the mucin-like domain served as a competent receptor. These studies provide evidence that, in the absence of a functional αDG, TIM-1 mediates the entry of LASV pseudoviral particles through interactions of virions with the IgV PtdSer-binding pocket of TIM-1.IMPORTANCE PtdSer receptors, such as TIM-1, are emerging as critical entry factors for many enveloped viruses. Most recently, hepatitis C virus and Zika virus have been added to a growing list. PtdSer receptors engage with enveloped viruses through the binding of PtdSer embedded in the viral envelope, defining them as GP-independent receptors. This GP-independent entry mechanism should effectively mediate the entry of all enveloped viruses, yet LASV GP-pseudotyped viruses were previously found to be unresponsive to PtdSer receptor enhancement in HEK 293T cells. Here, we demonstrate that LASV pseudovirions can utilize the PtdSer receptor TIM-1 but only in the absence of appropriately glycosylated α-dystroglycan (αDG), the high-affinity cell surface receptor for LASV. Our studies shed light on LASV receptor utilization and explain why previous studies performed with α-DG-expressing cells did not find that LASV pseudovirions utilize PtdSer receptors for virus uptake.


Assuntos
Distroglicanas/deficiência , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Interações Hospedeiro-Patógeno , Vírus Lassa/fisiologia , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Chlorocebus aethiops , Análise Mutacional de DNA , Células HEK293 , Receptor Celular 1 do Vírus da Hepatite A/genética , Humanos , Receptores Virais/genética , Células Vero
13.
Breast Cancer Res ; 16(6): 493, 2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25499888

RESUMO

INTRODUCTION: Several innate immunity genes are overexpressed in human cancers and their roles remain controversial. Bone marrow stromal antigen 2 (BST-2) is one such gene whose role in cancer is not clear. BST-2 is a unique innate immunity gene with both antiviral and pro-tumor functions and therefore can serve as a paradigm for understanding the roles of other innate immunity genes in cancers. METHODS: Meta-analysis of tumors from breast cancer patients obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets were evaluated for levels of BST-2 expression and for tumor aggressiveness. In vivo, we examined the effect of knockdown of BST-2 in two different murine carcinoma cells on tumor growth, metastasis, and survival. In vitro, we assessed the effect of carcinoma cell BST-2 knockdown and/or overexpression on adhesion, anchorage-independent growth, migration, and invasion. RESULTS: BST-2 in breast tumors and mammary cancer cells is a strong predictor of tumor size, tumor aggressiveness, and host survival. In humans, BST-2 mRNA is elevated in metastatic and invasive breast tumors. In mice, orthotopic implantation of mammary tumor cells lacking BST-2 increased tumor latency, decreased primary tumor growth, reduced metastases to distal organs, and prolonged host survival. Furthermore, we found that the cellular basis for the role of BST-2 in promoting tumorigenesis include BST-2-directed enhancement in cancer cell adhesion, anchorage-independency, migration, and invasion. CONCLUSIONS: BST-2 contributes to the emergence of neoplasia and malignant progression of breast cancer. Thus, BST-2 may (1) serve as a biomarker for aggressive breast cancers, and (2) be a novel target for breast cancer therapeutics.


Assuntos
Antígenos CD/genética , Neoplasias da Mama/genética , Carcinoma/genética , Glicoproteínas de Membrana/genética , RNA Mensageiro/metabolismo , Animais , Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Bases de Dados Factuais , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Prognóstico
14.
Retrovirology ; 11: 102, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25407601

RESUMO

BACKGROUND: Exosomes are membranous nanovesicles secreted into the extracellular milieu by diverse cell types. Exosomes facilitate intercellular communication, modulate cellular pheno/genotype, and regulate microbial pathogenesis. Although human semen contains exosomes, their role in regulating infection with viruses that are sexually transmitted remains unknown. In this study, we used semen exosomes purified from healthy human donors to evaluate the role of exosomes on the infectivity of different strains of HIV-1 in a variety of cell lines. RESULTS: We show that human semen contains a heterologous population of exosomes, enriched in mRNA encoding tetraspanin exosomal markers and various antiviral factors. Semen exosomes are internalized by recipient cells and upon internalization, inhibit replication of a broad array of HIV-1 strains. Remarkably, the anti-HIV-1 activity of semen exosomes is specific to retroviruses because semen exosomes blocked replication of the murine AIDS (mAIDS) virus complex (LP-BM5). However, exosomes from blood had no effect on HIV-1 or LP-BM5 replication. Additionally, semen and blood exosomes had no effect on replication of herpes simplex virus; types 1 and 2 (HSV1 and HSV2). Mechanistic studies indicate that semen exosomes exert a post-entry block on HIV-1 replication by orchestrating deleterious effects on particle-associated reverse transcriptase activity and infectivity. CONCLUSIONS: These illuminating findings i) improve our knowledge of the cargo of semen exosomes, ii) reveal that semen exosomes possess anti-retroviral activity, and iii) suggest that semen exosome-mediated inhibition of HIV-1 replication may provide novel opportunities for the development of new therapeutics for HIV-1.


Assuntos
Antivirais/metabolismo , Exossomos/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Sêmen/imunologia , Sêmen/virologia , Replicação Viral , Antivirais/isolamento & purificação , Humanos , Masculino
15.
J Gen Virol ; 95(Pt 11): 2450-2461, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25053563

RESUMO

Bone marrow stromal antigen 2 (BST-2; also known as tetherin or CD317) is an IFN-inducible gene that functions to block the release of a range of nascent enveloped virions from infected host cells. However, the role of BST-2 in viral pathogenesis remains poorly understood. BST-2 plays a multifaceted role in innate immunity, as it hinders retroviral infection and possibly promotes infection with some rhabdo- and orthomyxoviruses. This paradoxical role has probably hindered exploration of BST-2 antiviral function in vivo. We reported previously that BST-2 tethers Chikungunya virus (CHIKV)-like particles on the cell plasma membrane. To explore the role of BST-2 in CHIKV replication and host protection, we utilized CHIKV strain 181/25 to examine early events during CHIKV infection in a BST-2(-/-) mouse model. We observed an interesting dichotomy between WT and BST-2(-/-) mice. BST-2 deficiency increased inoculation site viral load, culminating in higher systemic viraemia and increased lymphoid tissues tropism. A suppressed inflammatory innate response demonstrated by impaired expression of IFN-α, IFN-γ and CD40 ligand was observed in BST-2(-/-) mice compared with the WT controls. These findings suggested that, in part, BST-2 protects lymphoid tissues from CHIKV infection and regulates CHIKV-induced inflammatory response by the host.


Assuntos
Antígenos CD/imunologia , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Glicoproteínas de Membrana/imunologia , Animais , Antígenos CD/genética , Quimiocinas/genética , Febre de Chikungunya/genética , Vírus Chikungunya/imunologia , Vírus Chikungunya/patogenicidade , Vírus Chikungunya/fisiologia , Citocinas/genética , Modelos Animais de Doenças , Expressão Gênica , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Carga Viral , Replicação Viral/imunologia
16.
J Immunol ; 189(8): 4088-103, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22972924

RESUMO

APOBEC3 (A3) proteins are virus-restriction factors that provide intrinsic immunity against infections by viruses like HIV-1 and mouse mammary tumor virus. A3 proteins are inducible by inflammatory stimuli, such as LPS and IFN-α, via mechanisms that are not fully defined. Using genetic and pharmacological studies on C57BL/6 mice and cells, we show that IFN-α and LPS induce A3 via different pathways, independently of each other. IFN-α positively regulates mouse APOBEC3 (mA3) mRNA expression through IFN-αR/PKC/STAT1 and negatively regulates mA3 mRNA expression via IFN-αR/MAPKs-signaling pathways. Interestingly, LPS shows some variation in its regulatory behavior. Although LPS-mediated positive regulation of mA3 mRNA occurs through TLR4/TRIF/IRF3/PKC, it negatively modulates mA3 mRNA via TLR4/MyD88/MAPK-signaling pathways. Additional studies on human peripheral blood mononuclear cells reveal that PKC differentially regulates IFN-α and LPS induction of human A3A, A3F, and A3G mRNA expression. In summary, we identified important signaling targets downstream of IFN-αR and TLR4 that mediate A3 mRNA induction by both LPS and IFN-α. Our results provide new insights into the signaling targets that could be manipulated to enhance the intracellular store of A3 and potentially enhance A3 antiviral function in the host.


Assuntos
Citidina Desaminase/biossíntese , Interferon-alfa/fisiologia , Lipopolissacarídeos/fisiologia , RNA Mensageiro/biossíntese , Transdução de Sinais/imunologia , Regulação para Cima/imunologia , Animais , Linhagem Celular , Linhagem Celular Transformada , Citidina Desaminase/genética , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , HIV-1/imunologia , Humanos , Mediadores da Inflamação/fisiologia , Líquido Intracelular/imunologia , Líquido Intracelular/virologia , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Regulação para Cima/genética
17.
Nature ; 445(7130): 927-30, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17259974

RESUMO

Genomes of all mammals encode apobec3 genes, which are thought to have a function in intrinsic cellular immunity to several viruses including human immunodeficiency virus type 1 (HIV-1). APOBEC3 (A3) proteins are packaged into virions and inhibit retroviral replication in newly infected cells, at least in part by deaminating cytidines on the negative strand DNA intermediates. However, the role of A3 in innate resistance to mouse retroviruses is not understood. Here we show that A3 functions during retroviral infection in vivo and provides partial protection to mice against infection with mouse mammary tumour virus (MMTV). Both mouse A3 and human A3G proteins interacted with the MMTV nucleocapsid in an RNA-dependent fashion and were packaged into virions. In addition, mouse A3-containing and human A3G-containing virions showed a marked decrease in titre. Last, A3(-/-) mice were more susceptible to MMTV infection, because virus spread was more rapid and extensive than in their wild-type littermates.


Assuntos
Citidina Desaminase/metabolismo , Imunidade Inata , Vírus do Tumor Mamário do Camundongo/imunologia , Vírus do Tumor Mamário do Camundongo/fisiologia , Nucleosídeo Desaminases/metabolismo , Proteínas Repressoras/metabolismo , Replicação Viral , Desaminase APOBEC-3G , Animais , Citidina Desaminase/deficiência , Citidina Desaminase/genética , Humanos , Camundongos , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Nucleosídeo Desaminases/genética , RNA/genética , RNA/metabolismo , Proteínas Repressoras/genética
18.
Viruses ; 15(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36992332

RESUMO

In this follow-up study, we investigated the abundance and compartmentalization of blood plasma extracellular miRNA (exmiRNA) into lipid-based carriers-blood plasma extracellular vesicles (EVs) and non-lipid-based carriers-extracellular condensates (ECs) during SIV infection. We also assessed how combination antiretroviral therapy (cART), administered in conjunction with phytocannabinoid delta-9-tetrahydrocannabinol (THC), altered the abundance and compartmentalization of exmiRNAs in the EVs and ECs of SIV-infected rhesus macaques (RMs). Unlike cellular miRNAs, exmiRNAs in blood plasma may serve as minimally invasive disease indicators because they are readily detected in stable forms. The stability of exmiRNAs in cell culture fluids and body fluids (urine, saliva, tears, cerebrospinal fluid (CSF), semen, blood) is based on their association with different carriers (lipoproteins, EVs, and ECs) that protect them from the activities of endogenous RNases. Here, we showed that in the blood plasma of uninfected control RMs, significantly less exmiRNAs were associated with EVs compared to the level (30% higher) associated with ECs, and that SIV infection altered the profile of EVs and ECs miRNAome (Manuscript 1). In people living with HIV (PLWH), host-encoded miRNAs regulate both host and viral gene expression, which may serve as indicators of disease or treatment biomarkers. The profile of miRNAs in blood plasma of PLWH (elite controllers versus viremic patients) are different, indicating that HIV may alter host miRNAome. However, there are no studies assessing the effect of cART or other substances used by PLWH, such as THC, on the abundance of exmiRNA and their association with EVs and ECs. Moreover, longitudinal exmiRNA profiles following SIV infection, treatment with THC, cART, or THC+cART remains unclear. Here, we serially analyzed miRNAs associated with blood plasma derived EVs and ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of male Indian rhesus macaques (RMs) in five treatment groups, including VEH/SIV, VEH/SIV/cART, THC/SIV, THC/SIV/cART, or THC alone. Separation of EVs and ECs was achieved with the unparalleled nano-particle purification tool ─PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high resolution separation and retrieval of preparative quantities of sub-populations of extracellular structures. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNA was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We investigated the effect of cART, THC, or both cART and THC together on the abundance and compartmentalization of blood plasma exmiRNA in EVs and ECs in SIV-infected RMs. As shown in Manuscript 1 of this series, were in uninfected RMs, ~30% of exmiRNAs were associated with ECs, we confirmed in this follow up manuscript that exmiRNAs were present in both lipid-based carriers-EVs and non-lipid-based carriers-ECs, with 29.5 to 35.6% and 64.2 to 70.5 % being associated with EVs and ECs, respectively. Remarkably, the different treatments (cART, THC) have distinct effects on the enrichment and compartmentalization pattern of exmiRNAs. In the VEH/SIV/cART group, 12 EV-associated and 15 EC-associated miRNAs were significantly downregulated. EV-associated miR-206, a muscle-specific miRNA that is present in blood, was higher in the VEH/SIV/ART compared to the VEH/SIV group. ExmiR-139-5p that was implicated in endocrine resistance, focal adhesion, lipid and atherosclerosis, apoptosis, and breast cancer by miRNA-target enrichment analysis was significantly lower in VEH/SIV/cART compared to VEH/SIV, irrespective of the compartment. With respect to THC treatment, 5 EV-associated and 21 EC-associated miRNAs were significantly lower in the VEH/THC/SIV. EV-associated miR-99a-5p was higher in VEH/THC/SIV compared to VEH/SIV, while miR-335-5p counts were significantly lower in both EVs and ECs of THC/SIV compared to VEH/SIV. EVs from SIV/cART/THC combined treatment group have significant increases in the count of eight (miR-186-5p, miR-382-5p, miR-139-5p and miR-652, miR-10a-5p, miR-657, miR-140-5p, miR-29c-3p) miRNAs, all of which were lower in VEH/SIV/cART group. Analysis of miRNA-target enrichment showed that this set of eight miRNAs were implicated in endocrine resistance, focal adhesions, lipid and atherosclerosis, apoptosis, and breast cancer as well as cocaine and amphetamine addiction. In ECs and EVs, combined THC and cART treatment significantly increased miR-139-5p counts compared to VEH/SIV group. Significant alterations in these host miRNAs in both EVs and ECs in the untreated and treated (cART, THC, or both) RMs indicate the persistence of host responses to infection or treatments, and this is despite cART suppression of viral load and THC suppression of inflammation. To gain further insight into the pattern of miRNA alterations in EVs and ECs and to assess potential cause-and-effect relationships, we performed longitudinal miRNA profile analysis, measured in terms of months (1 and 5) post-infection (MPI). We uncovered miRNA signatures associated with THC or cART treatment of SIV-infected macaques in both EVs and ECs. While the number of miRNAs was significantly higher in ECs relative to EVs for all groups (VEH/SIV, SIV/cART, THC/SIV, THC/SIV/cART, and THC) longitudinally from 1 MPI to 5 MPI, treatment with cART and THC have longitudinal effects on the abundance and compartmentalization pattern of exmiRNAs in the two carriers. As shown in Manuscript 1 where SIV infection led to longitudinal suppression of EV-associated miRNA-128-3p, administration of cART to SIV-infected RMs did not increase miR-128-3p but resulted in longitudinal increases in six EV-associated miRNAs (miR-484, miR-107, miR-206, miR-184, miR-1260b, miR-6132). Furthermore, administration of cART to THC treated SIV-infected RMs resulted in a longitudinal decrease in three EV-associated miRNAs (miR-342-3p, miR-100-5p, miR181b-5p) and a longitudinal increase in three EC-associated miRNAs (miR-676-3p, miR-574-3p, miR-505-5p). The longitudinally altered miRNAs in SIV-infected RMs may indicate disease progression, while in the cART Group and the THC Group, the longitudinally altered miRNAs may serve as biomarkers of response to treatment. Conclusions: This paired EVs and ECs miRNAome analyses provided a comprehensive cross-sectional and longitudinal summary of the host exmiRNA responses to SIV infection and the impact of THC, cART, or THC and cART together on the miRNAome during SIV infection. Overall, our data point to previously unrecognized alterations in the exmiRNA profile in blood plasma following SIV infection. Our data also indicate that cART and THC treatment independently and in combination may alter both the abundance and the compartmentalization of several exmiRNA related to various disease and biological processes.


Assuntos
Vesículas Extracelulares , Infecções por HIV , MicroRNAs , Neoplasias , Animais , Masculino , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Macaca mulatta , Estudos Transversais , Seguimentos , MicroRNAs/genética , Infecções por HIV/tratamento farmacológico , Plasma
19.
Viruses ; 15(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36992331

RESUMO

Background: This is Manuscript 1 of a two-part Manuscript of the same series. Here, we present findings from our first set of studies on the abundance and compartmentalization of blood plasma extracellular microRNAs (exmiRNAs) into extracellular particles, including blood plasma extracellular vesicles (EVs) and extracellular condensates (ECs) in the setting of untreated HIV/SIV infection. The goals of the study presented in this Manuscript 1 are to (i) assess the abundance and compartmentalization of exmiRNAs in EVs versus ECs in the healthy uninfected state, and (ii) evaluate how SIV infection may affect exmiRNA abundance and compartmentalization in these particles. Considerable effort has been devoted to studying the epigenetic control of viral infection, particularly in understanding the role of exmiRNAs as key regulators of viral pathogenesis. MicroRNA (miRNAs) are small (~20-22 nts) non-coding RNAs that regulate cellular processes through targeted mRNA degradation and/or repression of protein translation. Originally associated with the cellular microenvironment, circulating miRNAs are now known to be present in various extracellular environments, including blood serum and plasma. While in circulation, miRNAs are protected from degradation by ribonucleases through their association with lipid and protein carriers, such as lipoproteins and other extracellular particles-EVs and ECs. Functionally, miRNAs play important roles in diverse biological processes and diseases (cell proliferation, differentiation, apoptosis, stress responses, inflammation, cardiovascular diseases, cancer, aging, neurological diseases, and HIV/SIV pathogenesis). While lipoproteins and EV-associated exmiRNAs have been characterized and linked to various disease processes, the association of exmiRNAs with ECs is yet to be made. Likewise, the effect of SIV infection on the abundance and compartmentalization of exmiRNAs within extracellular particles is unclear. Literature in the EV field has suggested that most circulating miRNAs may not be associated with EVs. However, a systematic analysis of the carriers of exmiRNAs has not been conducted due to the inefficient separation of EVs from other extracellular particles, including ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of SIV-uninfected male Indian rhesus macaques (RMs, n = 15). Additionally, paired EVs and ECs were isolated from EDTA blood plasma of combination anti-retroviral therapy (cART) naïve SIV-infected (SIV+, n = 3) RMs at two time points (1- and 5-months post infection, 1 MPI and 5 MPI). Separation of EVs and ECs was achieved with PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high-resolution separation and retrieval of preparative quantities of sub-populations of extracellular particles. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNAs was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We showed that exmiRNAs in blood plasma are not restricted to any type of extracellular particles but are associated with lipid-based carriers-EVs and non-lipid-based carriers-ECs, with a significant (~30%) proportion of the exmiRNAs being associated with ECs. In the blood plasma of uninfected RMs, a total of 315 miRNAs were associated with EVs, while 410 miRNAs were associated with ECs. A comparison of detectable miRNAs within paired EVs and ECs revealed 19 and 114 common miRNAs, respectively, detected in all 15 RMs. Let-7a-5p, Let-7c-5p, miR-26a-5p, miR-191-5p, and let-7f-5p were among the top 5 detectable miRNAs associated with EVs in that order. In ECs, miR-16-5p, miR-451, miR-191-5p, miR-27a-3p, and miR-27b-3p, in that order, were the top detectable miRNAs in ECs. miRNA-target enrichment analysis of the top 10 detected common EV and EC miRNAs identified MYC and TNPO1 as top target genes, respectively. Functional enrichment analysis of top EV- and EC-associated miRNAs identified common and distinct gene-network signatures associated with various biological and disease processes. Top EV-associated miRNAs were implicated in cytokine-cytokine receptor interactions, Th17 cell differentiation, IL-17 signaling, inflammatory bowel disease, and glioma. On the other hand, top EC-associated miRNAs were implicated in lipid and atherosclerosis, Th1 and Th2 cell differentiation, Th17 cell differentiation, and glioma. Interestingly, infection of RMs with SIV revealed that the brain-enriched miR-128-3p was longitudinally and significantly downregulated in EVs, but not ECs. This SIV-mediated decrease in miR-128-3p counts was validated by specific TaqMan microRNA stem-loop RT-qPCR assay. Remarkably, the observed SIV-mediated decrease in miR-128-3p levels in EVs from RMs agrees with publicly available EV miRNAome data by Kaddour et al., 2021, which showed that miR-128-3p levels were significantly lower in semen-derived EVs from HIV-infected men who used or did not use cocaine compared to HIV-uninfected individuals. These findings confirmed our previously reported finding and suggested that miR-128 may be a target of HIV/SIV. Conclusions: In the present study, we used sRNA sequencing to provide a holistic understanding of the repertoire of circulating exmiRNAs and their association with extracellular particles, such as EVs and ECs. Our data also showed that SIV infection altered the profile of the miRNAome of EVs and revealed that miR-128-3p may be a potential target of HIV/SIV. The significant decrease in miR-128-3p in HIV-infected humans and in SIV-infected RMs may indicate disease progression. Our study has important implications for the development of biomarker approaches for various types of cancer, cardiovascular diseases, organ injury, and HIV based on the capture and analysis of circulating exmiRNAs.


Assuntos
Doenças Cardiovasculares , MicroRNA Circulante , Vesículas Extracelulares , Infecções por HIV , MicroRNAs , Animais , Humanos , Masculino , MicroRNAs/metabolismo , MicroRNA Circulante/metabolismo , Doenças Cardiovasculares/metabolismo , Macaca mulatta , Ácido Edético/metabolismo , Vesículas Extracelulares/metabolismo , Infecções por HIV/metabolismo , Plasma/metabolismo
20.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036007

RESUMO

Intestinal epithelial barrier dysfunction, a hallmark of HIV/SIV infection, persists despite viral suppression by combination antiretroviral therapy (cART). Emerging evidence suggests a critical role for long noncoding RNAs (lncRNAs) in maintaining epithelial homeostasis. We simultaneously profiled lncRNA/mRNA expression exclusively in colonic epithelium (CE) of SIV-infected rhesus macaques (RMs) administered vehicle (VEH) or Δ-9-tetrahydrocannabinol (THC). Relative to controls, fewer lncRNAs were up- or downregulated in CE of THC/SIV compared with VEH/SIV RMs. Importantly, reciprocal expression of the natural antisense lncRNA MMP25-AS1 (up 2.3-fold) and its associated protein-coding gene MMP25 (attracts neutrophils by inactivating alpha-1 anti-trypsin/SERPINA1) (down 2.2-fold) was detected in CE of THC/SIV RMs. Computational analysis verified 2 perfectly matched complementary regions and an energetically stable (normalized binding free energy = -0.2626) MMP25-AS1/MMP25 duplex structure. MMP25-AS1 overexpression blocked IFN-γ-induced MMP25 mRNA and protein expression in vitro. Elevated MMP25 protein expression in CE of VEH/SIV but not THC/SIV RMs was associated with increased infiltration by myeloperoxidase/CD11b++ neutrophils (transendothelial migration) and epithelial CD47 (transepithelial migration) expression. Interestingly, THC administered in combination with cART increased MMP25-AS1 and reduced MMP25 mRNA/protein expression in jejunal epithelium of SIV-infected RMs. Our findings demonstrate that MMP25-AS1 is a potentially unique epigenetic regulator of MMP25 and that low-dose THC can reduce neutrophil infiltration and intestinal epithelial injury potentially by downregulating MMP25 expression through modulation of MMP25-AS1.


Assuntos
Canabinoides , Infecções por HIV , RNA Longo não Codificante , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Canabinoides/uso terapêutico , RNA Longo não Codificante/genética , Macaca mulatta , Infiltração de Neutrófilos , Dronabinol , Infecções por HIV/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA