Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 50(1): 47-56, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813702

RESUMO

OBJECTIVE: Echocardiography, a critical tool for assessing left atrial (LA) volume, often relies on manual or semi-automated measurements. This study introduces a fully automated, real-time method for measuring LA volume in both 2-D and 3-D imaging, in the aim of offering accuracy comparable to that of expert assessments while saving time and reducing operator variability. METHODS: We developed an automated pipeline comprising a network to identify the end-systole (ES) time point and robust 2-D and 3-D U-Nets for segmentation. We employed data sets of 789 2-D images and 286 3-D recordings and explored various training regimes, including recurrent networks and pseudo-labeling, to estimate volume curves. RESULTS: Our baseline results revealed an average volume difference of 2.9 mL for 2-D and 7.8 mL for 3-D, respectively, compared with manual methods. The application of pseudo-labeling to all frames in the cine loop generally led to more robust volume curves and notably improved ES measurement in cases with limited data. CONCLUSION: Our results highlight the potential of automated LA volume estimation in clinical practice. The proposed prototype application, capable of processing real-time data from a clinical ultrasound scanner, provides valuable temporal volume curve information in the echo lab.


Assuntos
Aprendizado Profundo , Átrios do Coração/diagnóstico por imagem , Ecocardiografia/métodos , Imageamento Tridimensional , Processamento de Imagem Assistida por Computador/métodos
2.
Eur Heart J Imaging Methods Pract ; 1(2): qyad040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39045079

RESUMO

Aims: Impaired standardization of echocardiograms may increase inter-operator variability. This study aimed to determine whether the real-time guidance of experienced sonographers by deep learning (DL) could improve the standardization of apical recordings. Methods and results: Patients (n = 88) in sinus rhythm referred for echocardiography were included. All participants underwent three examinations, whereof two were performed by sonographers and the third by cardiologists. In the first study period (Period 1), the sonographers were instructed to provide echocardiograms for the analyses of the left ventricular function. Subsequently, after brief training, the DL guidance was used in Period 2 by the sonographer performing the second examination. View standardization was quantified retrospectively by a human expert as the primary endpoint and the DL algorithm as the secondary endpoint. All recordings were scored in rotation and tilt both separately and combined and were categorized as standardized or non-standardized. Sonographers using DL guidance had more standardized acquisitions for the combination of rotation and tilt than sonographers without guidance in both periods (all P ≤ 0.05) when evaluated by the human expert and DL [except for the apical two-chamber (A2C) view by DL evaluation]. When rotation and tilt were analysed individually, A2C and apical long-axis rotation and A2C tilt were significantly improved, and the others were numerically improved when evaluated by the echocardiography expert. Furthermore, all, except for A2C rotation, were significantly improved when evaluated by DL (P < 0.01). Conclusion: Real-time guidance by DL improved the standardization of echocardiographic acquisitions by experienced sonographers. Future studies should evaluate the impact with respect to variability of measurements and when used by less-experienced operators. ClinicalTrialsgov Identifier: NCT04580095.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA