Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2308401121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446849

RESUMO

Generation of defined neuronal subtypes from human pluripotent stem cells remains a challenge. The proneural factor NGN2 has been shown to overcome experimental variability observed by morphogen-guided differentiation and directly converts pluripotent stem cells into neurons, but their cellular heterogeneity has not been investigated yet. Here, we found that NGN2 reproducibly produces three different kinds of excitatory neurons characterized by partial coactivation of other neurotransmitter programs. We explored two principle approaches to achieve more precise specification: prepatterning the chromatin landscape that NGN2 is exposed to and combining NGN2 with region-specific transcription factors. Unexpectedly, the chromatin context of regionalized neural progenitors only mildly altered genomic NGN2 binding and its transcriptional response and did not affect neurotransmitter specification. In contrast, coexpression of region-specific homeobox factors such as EMX1 resulted in drastic redistribution of NGN2 including recruitment to homeobox targets and resulted in glutamatergic neurons with silenced nonglutamatergic programs. These results provide the molecular basis for a blueprint for improved strategies for generating a plethora of defined neuronal subpopulations from pluripotent stem cells for therapeutic or disease-modeling purposes.


Assuntos
Genes Homeobox , Neurônios , Humanos , Cromatina , Neurotransmissores , Prosencéfalo
2.
Hum Mol Genet ; 33(2): 138-149, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37802886

RESUMO

Spinocerebellar ataxia type 1 is caused by an expansion of the polyglutamine tract in ATAXIN-1. Ataxin-1 is broadly expressed throughout the brain and is involved in regulating gene expression. However, it is not yet known if mutant ataxin-1 can impact the regulation of alternative splicing events. We performed RNA sequencing in mouse models of spinocerebellar ataxia type 1 and identified that mutant ataxin-1 expression abnormally leads to diverse splicing events in the mouse cerebellum of spinocerebellar ataxia type 1. We found that the diverse splicing events occurred in a predominantly cell autonomous manner. A majority of the transcripts with misregulated alternative splicing events were previously unknown, thus allowing us to identify overall new biological pathways that are distinctive to those affected by differential gene expression in spinocerebellar ataxia type 1. We also provide evidence that the splicing factor Rbfox1 mediates the effect of mutant ataxin-1 on misregulated alternative splicing and that genetic manipulation of Rbfox1 expression modifies neurodegenerative phenotypes in a Drosophila model of spinocerebellar ataxia type 1 in vivo. Together, this study provides novel molecular mechanistic insight into the pathogenesis of spinocerebellar ataxia type 1 and identifies potential therapeutic strategies for spinocerebellar ataxia type 1.


Assuntos
Processamento Alternativo , Ataxias Espinocerebelares , Camundongos , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Processamento Alternativo/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Encéfalo/metabolismo , Ataxina-3/metabolismo
3.
EMBO Rep ; 25(7): 2950-2973, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38816515

RESUMO

The development of cancer therapeutics is often hindered by the fact that specific oncogenes cannot be directly pharmaceutically addressed. Targeting deubiquitylases that stabilize these oncogenes provides a promising alternative. USP28 and USP25 have been identified as such target deubiquitylases, and several small-molecule inhibitors indiscriminately inhibiting both enzymes have been developed. To obtain insights into their mode of inhibition, we structurally and functionally characterized USP28 in the presence of the three different inhibitors AZ1, Vismodegib and FT206. The compounds bind into a common pocket acting as a molecular sink. Our analysis provides an explanation why the two enzymes are inhibited with similar potency while other deubiquitylases are not affected. Furthermore, a key glutamate residue at position 366/373 in USP28/USP25 plays a central structural role for pocket stability and thereby for inhibition and activity. Obstructing the inhibitor-binding pocket by mutation of this glutamate may provide a tool to accelerate future drug development efforts for selective inhibitors of either USP28 or USP25 targeting distinct binding pockets.


Assuntos
Ubiquitina Tiolesterase , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Sítios de Ligação , Piridinas/química , Piridinas/farmacologia , Ligação Proteica , Modelos Moleculares
4.
Cell Mol Life Sci ; 79(8): 404, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35802260

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is one of nine polyglutamine (polyQ) diseases and is characterized as an adult late-onset, progressive, dominantly inherited genetic disease. SCA1 is caused by an increase in the number of CAG repeats in the ATXN1 gene leading to an expanded polyQ tract in the ATAXIN-1 protein. ATAXIN-1 is broadly expressed throughout the brain. However, until recently, SCA1 research has primarily centered on the cerebellum, given the characteristic cerebellar Purkinje cell loss observed in patients, as well as the progressive motor deficits, including gait and limb incoordination, that SCA1 patients present with. There are, however, also other symptoms such as respiratory problems, cognitive defects and memory impairment, anxiety, and depression observed in SCA1 patients and mouse models, which indicate that there are extra-cerebellar effects of SCA1 that cannot be explained solely through changes in the cerebellar region of the brain alone. The existing gap between human and mouse model studies of extra-cerebellar regions in SCA1 makes it difficult to answer many important questions in the field. This review will cover both the cerebellar and extra-cerebellar effects of SCA1 and highlight the need for further investigations into the impact of mutant ATXN1 expression in these regions. This review will also discuss implications of extra-cerebellar effects not only for SCA1 but other neurodegenerative diseases showing diverse pathology as well.


Assuntos
Ataxias Espinocerebelares , Animais , Cerebelo/patologia , Modelos Animais de Doenças , Camundongos , Células de Purkinje , Ataxias Espinocerebelares/metabolismo
5.
J Org Chem ; 87(5): 3856-3862, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179025

RESUMO

3-Aminoindazoles are privileged scaffolds for bioactive drug-like molecules. In this study, a microwave-assisted cascade reaction for the synthesis of N-1 substituted 3-aminoindazoles with yields up to 81% has been developed. Starting from 3-(2-bromoaryl)-1,2,4-oxadiazol-5(4H)-ones, the reaction exhibits a broad substrate scope including anilines, aliphatic amines, and sulfonamides and bypasses selectivity issues between N-1 and 3-amino group. Furthermore, the Differential Scanning Fluorimetry screen of a kinase panel demonstrated the value of targeting N-1 substituted 3-aminoindazoles as kinase-biased fragments.


Assuntos
Aminas , Micro-Ondas , Aminas/química
6.
J Enzyme Inhib Med Chem ; 37(1): 1752-1764, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36124840

RESUMO

A series of derivatives of the potent dual soluble epoxide hydrolase (sEH)/5-lipoxygenase-activating protein (FLAP) inhibitor diflapolin was designed, synthesised, and characterised. These novel compounds, which contain a benzimidazole subunit were evaluated for their inhibitory activity against sEH and FLAP. Molecular modelling tools were applied to analyse structure-activity relationships (SAR) on both targets and to predict solubility and gastrointestinal (GI) absorption. The most promising dual inhibitors of these series are 5a, 6b, and 6c.


Assuntos
Benzimidazóis , Epóxido Hidrolases , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Relação Estrutura-Atividade
7.
Proc Natl Acad Sci U S A ; 115(25): 6470-6475, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866841

RESUMO

Human cell models for disease based on induced pluripotent stem (iPS) cells have proven to be powerful new assets for investigating disease mechanisms. New insights have been obtained studying single mutations using isogenic controls generated by gene targeting. Modeling complex, multigenetic traits using patient-derived iPS cells is much more challenging due to line-to-line variability and technical limitations of scaling to dozens or more patients. Induced neuronal (iN) cells reprogrammed directly from dermal fibroblasts or urinary epithelia could be obtained from many donors, but such donor cells are heterogeneous, show interindividual variability, and must be extensively expanded, which can introduce random mutations. Moreover, derivation of dermal fibroblasts requires invasive biopsies. Here we show that human adult peripheral blood mononuclear cells, as well as defined purified T lymphocytes, can be directly converted into fully functional iN cells, demonstrating that terminally differentiated human cells can be efficiently transdifferentiated into a distantly related lineage. T cell-derived iN cells, generated by nonintegrating gene delivery, showed stereotypical neuronal morphologies and expressed multiple pan-neuronal markers, fired action potentials, and were able to form functional synapses. These cells were stable in the absence of exogenous reprogramming factors. Small molecule addition and optimized culture systems have yielded conversion efficiencies of up to 6.2%, resulting in the generation of >50,000 iN cells from 1 mL of peripheral blood in a single step without the need for initial expansion. Thus, our method allows the generation of sufficient neurons for experimental interrogation from a defined, homogeneous, and readily accessible donor cell population.


Assuntos
Diferenciação Celular/fisiologia , Transdiferenciação Celular/fisiologia , Leucócitos Mononucleares/citologia , Neurônios/citologia , Linfócitos T/citologia , Adolescente , Adulto , Idoso , Reprogramação Celular/fisiologia , Feminino , Fibroblastos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Bioorg Med Chem ; 27(21): 115082, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31548084

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) modulators have found wide application for the treatment of cancers, metabolic disorders and inflammatory diseases. Contrary to PPARγ agonists, PPARγ antagonists have been much less studied and although they have shown immunomodulatory effects, there is still no therapeutically useful PPARγ antagonist on the market. In contrast to non-competitive, irreversible inhibition caused by 2-chloro-5-nitrobenzanilide (GW9662), the recently described (E)-2-(5-((4-methoxy-2-(trifluoromethyl)quinolin-6-yl)methoxy)-2-((4-(trifluoromethyl)benzyl)oxy)-benzylidene)-hexanoic acid (MTTB, T-10017) is a promising prototype for a new class of PPARγ antagonists. It exhibits competitive antagonism against rosiglitazone mediated activation of PPARγ ligand binding domain (PPARγLBD) in a transactivation assay in HEK293T cells with an IC50 of 4.3 µM against 1 µM rosiglitazone. The aim of this study was to investigate the structure-activity relationships (SAR) of the MTTB scaffold focusing on improving its physicochemical properties. Through this optimization, 34 new derivatives were prepared and characterized. Two new potent compounds (T-10075 and T-10106) with much improved drug-like properties and promising pharmacokinetic profile were identified.


Assuntos
Cinamatos/farmacologia , PPAR gama/antagonistas & inibidores , Quinolinas/farmacologia , Animais , Cinamatos/síntese química , Cinamatos/farmacocinética , Células HEK293 , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/farmacocinética , Ratos , Rosiglitazona/farmacologia , Relação Estrutura-Atividade
9.
Bioorg Chem ; 80: 655-667, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059891

RESUMO

Spirocyclic 1-oxa-9-azaspiro[5.5]undecan-4-amine scaffold was explored as a basis for the design of potential inhibitors of soluble epoxide hydrolase (sEH). Synthesis and testing of the initial SAR-probing library followed by biochemical testing against sEH allowed nominating a racemic lead compound (±)-22. The latter showed remarkable (> 0.5 mM) solubility in aqueous phosphate buffer solution, unusually low (for sEH inhibitors) lipophilicity as confirmed by experimentally determined logD7.4 of 0.99, and an excellent oral bioavailability in mice (as well as other pharmacokinetic characteristics). Individual enantiomer profiling revealed that the inhibitory potency primarily resided with the dextrorotatory eutomer (+)-22 (IC50 4.99 ±â€¯0.18 nM). For the latter, a crystal structure of its complex with a C-terminal domain of sEH was obtained and resolved. These data fully validate (+)-22 as a new non-racemic advanced lead compound for further development as a potential therapeutic agent for use in such areas as cardiovascular disease, inflammation and pain.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Epóxido Hidrolases/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Proteínas Recombinantes/metabolismo , Solubilidade
10.
J Med Chem ; 67(6): 4322-4345, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38457829

RESUMO

Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.


Assuntos
Química Farmacêutica , Descoberta de Drogas , Fotoquímica , Química Farmacêutica/métodos , Descoberta de Drogas/métodos , Biologia
11.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350720

RESUMO

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Assuntos
Canais de Potássio , Prurido , Animais , Camundongos , Antipruriginosos/uso terapêutico , Histamina/metabolismo , Loxapina/uso terapêutico , Canais de Potássio/metabolismo , Prurido/tratamento farmacológico , Prurido/metabolismo
12.
J Med Chem ; 67(13): 10567-10588, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38917049

RESUMO

G protein-coupled receptor G2A was postulated to be a promising target for the development of new therapeutics in neuropathic pain, acute myeloid leukemia, and inflammation. However, there is still a lack of potent, selective, and drug-like G2A agonists to be used as a chemical tool or as the starting matter for the development of drugs. In this work, we present the discovery and structure-activity relationship elucidation of a new potent and selective G2A agonist scaffold. Systematic optimization resulted in (3-(pyridin-3-ylmethoxy)benzoyl)-d-phenylalanine (T-10418) exhibiting higher potency than the reference and natural ligand 9-HODE and high selectivity among G protein-coupled receptors. With its favorable activity, a clean selectivity profile, excellent solubility, and high metabolic stability, T-10418 qualifies as a pharmacological tool to investigate the effects of G2A activation.


Assuntos
Receptores Acoplados a Proteínas G , Humanos , Relação Estrutura-Atividade , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Fenilalanina/farmacologia , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/síntese química , Estrutura Molecular
13.
Chirality ; 24(6): 441-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22544432

RESUMO

This article describes a copper-catalyzed aza-Henry reaction. Copper complexes of camphor-derived aminopyridines catalyze the addition of nitromethane to N-(2-pyridyl)sulfonyl aldimines to give the corresponding ß-nitrosulfonamides with good yields and variable enantiomeric excesses (up to 83%). An example of transformation of these compounds into N-(2-pyridyl)sulfonyl-α-amino acids and deprotection of the sulfonamide with Mg-MeOH is provided.

14.
Cells ; 11(17)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36078042

RESUMO

The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is known to lead to the progressive degeneration of specific neuronal populations, including cerebellar Purkinje cells (PCs), brainstem cranial nerve nuclei and inferior olive nuclei, and spinocerebellar tracts. The disease-causing protein ataxin-1 is fairly ubiquitously expressed throughout the brain and spinal cord, but most studies have primarily focused on the role of ataxin-1 in the cerebellum and brainstem. Therefore, the functions of ataxin-1 and the effects of SCA1 mutations in other brain regions including the cortex are not well-known. Here, we characterized pathology in the motor cortex of a SCA1 mouse model and performed RNA sequencing in this brain region to investigate the impact of mutant ataxin-1 towards transcriptomic alterations. We identified progressive cortical pathology and significant transcriptomic changes in the motor cortex of a SCA1 mouse model. We also identified progressive, region-specific, colocalization of p62 protein with mutant ataxin-1 aggregates in broad brain regions, but not the cerebellum or brainstem. A cross-regional comparison of the SCA1 cortical and cerebellar transcriptomic changes identified both common and unique gene expression changes between the two regions, including shared synaptic dysfunction and region-specific kinase regulation. These findings suggest that the cortex is progressively impacted via both shared and region-specific mechanisms in SCA1.


Assuntos
Ataxina-1/metabolismo , Proteínas do Tecido Nervoso , Ataxias Espinocerebelares , Animais , Ataxina-1/genética , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
15.
Front Mol Neurosci ; 15: 931301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35726299

RESUMO

Spinal and Bulbar Muscular Atrophy (SBMA) is an X-linked adult-onset progressive neuromuscular disease that affects the spinal and bulbar motor neurons and skeletal muscles. SBMA is caused by expansion of polymorphic CAG trinucleotide repeats in the Androgen Receptor (AR) gene, resulting in expanded glutamine tract in the AR protein. Polyglutamine (polyQ) expansion renders the mutant AR protein toxic, resulting in the formation of mutant protein aggregates and cell death. This classifies SBMA as one of the nine known polyQ diseases. Like other polyQ disorders, the expansion of the polyQ tract in the AR protein is the main genetic cause of the disease; however, multiple other mechanisms besides the polyQ tract expansion also contribute to the SBMA disease pathophysiology. Posttranslational modifications (PTMs), including phosphorylation, acetylation, methylation, ubiquitination, and SUMOylation are a category of mechanisms by which the functionality of AR has been found to be significantly modulated and can alter the neurotoxicity of SBMA. This review summarizes the different PTMs and their effects in regulating the AR function and discusses their pathogenic or protective roles in context of SBMA. This review also includes the therapeutic approaches that target the PTMs of AR in an effort to reduce the mutant AR-mediated toxicity in SBMA.

16.
ChemistryOpen ; 11(12): e202200252, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564354

RESUMO

A novel oxadiazolone-based method for the synthesis of 3-aminobenzisoxazoles by N-O bond formation and of 2-aminobenzoxazoles through a Tiemann-type rearrangement has been developed. The synthesis of these two pharmaceutically relevant heterocycles was realized by an unexplored retrosynthetic disconnection using a cyclic nitrenoid precursor-based strategy. The selective formation of the two isomers was significantly influenced by steric and electronic effects of substituents. However, tetrabutylammonium chloride (TBACl) efficiently promoted the Tiemann-type rearrangement over N-O bond formation. Control experiments indicate that deprotonation of the phenol induces both rearrangements.


Assuntos
Fenóis , Fenóis/química
17.
J Med Chem ; 65(3): 2023-2034, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34995452

RESUMO

The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor activated by 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT), which has been proposed as a promising therapeutic target for diabetic wound healing and gastrointestinal lesions. In this study, the rational design of a fluorescent probe based on the synthetic BLT2 agonist CAY10583 is described. The synthesis of several derivatives of CAY10583 coupled to fluorescein resulted in a traceable ligand suitable for different fluorescence-based techniques. An HTRF-based displacement assay (Tag-lite) on stably transfected CHO-K1 cells was developed to characterize binding properties of diverse BLT2 ligands. Highly specific binding to the BLT2 receptor was demonstrated in staining experiments on mouse skin tissue, and specific modulation of BLT2-induced cAMP signaling provided further evidence for receptor binding and ligand functionality. In conclusion, the fluorescent ligands developed in this study are suitable to investigate the pharmacology of BLT2 receptor ligands in a variety of assay systems.


Assuntos
Corantes Fluorescentes/química , Ligantes , Receptores do Leucotrieno B4/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Desenho de Fármacos , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Camundongos , Microscopia de Fluorescência , Ligação Proteica , Receptores do Leucotrieno B4/agonistas , Receptores do Leucotrieno B4/antagonistas & inibidores , Pele/metabolismo , Pele/patologia
18.
Biochem Pharmacol ; 204: 115191, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35907497

RESUMO

Focused compound libraries are well-established tools for hit identification in drug discovery and chemical probe development. We present the compilation and application of a focused screening library of fatty acid mimetics (FAMs), which are compounds designed to bind the orthosteric site of proteins that endogenously accommodate natural fatty acids and lipid metabolites. This set complies with chemical properties of FAM and was found suitable for use also in cellular setting. Several hits were retrieved in screening the focused library against diverse fatty acid binding targets including the enzymes soluble epoxide hydrolase (sEH) and leukotriene A4 hydrolase (LTA4H), the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), the carrier proteins fatty acid binding protein 4 and 5 (FABP4 and FABP5), as well as the G-protein coupled receptors leukotriene B4 receptor 1 (BLT1) and free-fatty acid receptor 1 (FFAR1). Thus, the focused FAM library is suitable to obtain chemical starting matter for fatty acid binding proteins and provides a valuable extension to available screening collections.


Assuntos
Epóxido Hidrolases , Ácidos Graxos , Epóxido Hidrolases/metabolismo , Proteínas de Ligação a Ácido Graxo , Ácidos Graxos/metabolismo , PPAR gama/metabolismo , Receptores do Leucotrieno B4/metabolismo , Receptor X Retinoide alfa/metabolismo
19.
Med Clin (Barc) ; 158(12): 586-595, 2022 06 24.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34511251

RESUMO

AIMS AND OBJECTIVES: Statins have been proposed as potentially useful agents for modulating the host response in COVID-19. However, solid evidence-based recommendations are still lacking. Our aim was to study the association between statin use and clinical outcomes in a large cohort of hospitalized patients with SARS-CoV-2 infection, as well as the specific consequences of chronic treatment withdrawal during hospital admission. MATERIAL AND METHODS: Retrospective observational study including 2191 hospitalized patients with confirmed SARS-CoV-2 infection. RESULTS: Mean age was 68.0±17.8 years and 597 (27.3%) patients died during follow-up. A total of 827 patients (37.7% of the whole sample), received chronic treatment with statins. Even though they underwent more frequent admissions in critical care units, chronic treatment with statins was not independently associated with all-cause mortality [HR 0.95 (0.72-1.25)]. During the whole hospital admission, 371 patients (16.9%) received at least one dose of statin. Although these patients had a significantly worse clinical profile, both treatment with statins during admission [HR 1.03 (0.78-1.35)] and withdrawal of chronic statin treatment [HR 1.01 (0.78-1.30)] showed a neutral effect in mortality. However, patients treated with statins presented more frequently hepatic cytolysis, rhabdomyolysis and thrombotic/hemorrhagic events. CONCLUSIONS: In this large cohort of hospitalized COVID-19 patients, statins were not independently associated with all-cause mortality during follow-up. Clinically relevant statin-associated adverse effects should be carefully monitored during hospital admission.


Assuntos
Tratamento Farmacológico da COVID-19 , Inibidores de Hidroximetilglutaril-CoA Redutases , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Hospitalização , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Pessoa de Meia-Idade , SARS-CoV-2
20.
Med Clin (Engl Ed) ; 158(12): 586-595, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35693916

RESUMO

Aims and objectives: Statins have been proposed as potentially useful agents for modulating the host response in COVID-19. However, solid evidence-based recommendations are still lacking. Our aim was to study the association between statin use and clinical outcomes in a large cohort of hospitalized patients with SARS-CoV-2 infection, as well as the specific consequences of chronic treatment withdrawal during hospital admission. Material and methods: Retrospective observational study including 2191 hospitalized patients with confirmed SARS-CoV-2 infection. Results: Mean age was 68.0±17.8 years and 597 (27.3%) patients died during follow-up. A total of 827 patients (37.7% of the whole sample), received chronic treatment with statins. Even though they underwent more frequent admissions in critical care units, chronic treatment with statins was not independently associated with all-cause mortality [HR 0.95 (0.72-1.25)]. During the whole hospital admission, 371 patients (16.9%) received at least one dose of statin. Although these patients had a significantly worse clinical profile, both treatment with statins during admission [HR 1.03 (0.78-1.35)] and withdrawal of chronic statin treatment [HR 1.01 (0.78-1.30)] showed a neutral effect in mortality. However, patients treated with statins presented more frequently hepatic cytolysis, rhabdomyolysis and thrombotic/hemorrhagic events. Conclusions: In this large cohort of hospitalized COVID-19 patients, statins were not independently associated with all-cause mortality during follow-up. Clinically relevant statin-associated adverse effects should be carefully monitored during hospital admission.


Antecedentes y objetivos: Se ha especulado que las estatinas pueden ser de utilidad en el tratamiento de pacientes con COVID-19, pero no existen evidencias clínicas sólidas. El objetivo de este trabajo es conocer su utilidad en una cohorte de gran tamaño de pacientes hospitalizados por COVID-19, así como si su retirada se asocia con un peor pronóstico. Material y métodos: Estudio retrospectivo observacional. Se incluyeron 2.191 pacientes hospitalizados con infección confirmada con SARS-CoV-2. Resultados: La edad media fue de 68,0 ± 17,8 años y fallecieron un total de 597 (27,3%) pacientes. Un total de 827 pacientes (37,7% de la muestra) estaban tratados previamente con estatinas. Aunque precisaron con mayor frecuencia de ingreso en camas de críticos, dicho grupo terapéutico no resultó un factor predictor independiente de muerte en el seguimiento [HR 0,95 (0,72-1,25)]. Un total de 371 pacientes (16,9%) recibió al menos una dosis de estatina durante el ingreso. A pesar de ser una población con un perfil clínico más desfavorable, tanto su uso [HR 1,03 (0,78-1,35)] como la suspensión durante el ingreso en pacientes que las recibían crónicamente [HR 1,01 (0,78-1,30)] presentaron un efecto neutro en la mortalidad. No obstante, el grupo con estatinas desarrolló con mayor frecuencia datos de citolisis hepática, rabdomiolisis y más eventos trombóticos y hemorrágicos. Conclusiones: En nuestra muestra, las estatinas no se asociaron de forma independiente a una menor mortalidad en pacientes con COVID-19. En aquellos pacientes que tengan indicación de recibirlas por su patología previa es necesario monitorizar estrechamente sus potenciales efectos adversos durante el ingreso hospitalario.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA