Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Chem Phys ; 152(20): 204904, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486676

RESUMO

Combining elastic incoherent neutron scattering and differential scanning calorimetry, we investigate the occurrence of the volume phase transition (VPT) in very concentrated poly-(N-isopropyl-acrylamide) (PNIPAM) microgel suspensions, from a polymer weight fraction of 30 wt. % up to dry conditions. Although samples are arrested at the macroscopic scale, atomic degrees of freedom are equilibrated and can be probed in a reproducible way. A clear signature of the VPT is present as a sharp drop in the mean square displacement of PNIPAM hydrogen atoms obtained by neutron scattering. As a function of concentration, the VPT gets smoother as dry conditions are approached, whereas the VPT temperature shows a minimum at about 43 wt. %. This behavior is qualitatively confirmed by calorimetry measurements. Molecular dynamics simulations are employed to complement experimental results and gain further insights into the nature of the VPT, confirming that it involves the formation of an attractive gel state between the microgels. Overall, these results provide evidence that the VPT in PNIPAM-based systems can be detected at different time- and length-scales as well as under overcrowded conditions.

2.
Phys Rev Lett ; 114(18): 187801, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26001017

RESUMO

A detailed inelastic neutron scattering investigation of the THz dynamics of liquid zinc is presented. The observed Q dependence clearly reveals the existence of a complex dynamics made up of two distinct excitations. The highest energy mode is the prolongation of the longitudinal acoustic density fluctuations whereas the comparison with the phonon dynamics of crystalline hcp zinc suggests a transverse acousticlike nature for the second one. This mode seems related to peculiar anisotropic interactions, possibly connected to the behavior of the crystalline phase.

3.
J Chem Phys ; 143(1): 015102, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26156493

RESUMO

The dynamics of the human oligonucleotide AG3(T2AG3)3 has been investigated by incoherent neutron scattering in the sub-nanosecond timescale. A hydration-dependent dynamical activation of thermal fluctuations in weakly hydrated samples was found, similar to that of protein powders. The amplitudes of such thermal fluctuations were evaluated in two different exchanged wave-vector ranges, so as to single out the different contributions from intra- and inter-nucleotide dynamics. The activation energy was calculated from the temperature-dependent characteristic times of the corresponding dynamical processes. The trends of both amplitudes and activation energies support a picture where oligonucleotides possess a larger conformational flexibility than long DNA sequences. This additional flexibility, which likely results from a significant relative chain-end contribution to the average chain dynamics, could be related to the strong structural polymorphism of the investigated oligonucleotides.

4.
Rev Sci Instrum ; 90(9): 095101, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575254

RESUMO

We present the concept of a novel time-focusing technique for neutron spectrometers, which allows us to disentangle time-focusing from beam divergence. The core of this approach is a double rotating-crystal monochromator that can be used to extract a larger wavelength band from a white beam, thus providing a higher flux at the sample compared to standard time-of-flight instruments, yet preserving energy resolution and beam collimation. The performances of a spectrometer based on this approach are quantitatively discussed in terms of possible incident wavelengths, flux at the sample, and (Q, E)-resolution. Analytical estimates suggest flux gains of about one order of magnitude at comparable resolutions in comparison to conventional time-of-flight spectrometers. Moreover, the double monochromator configuration natively shifts the sample away from the source line-of-sight, thus significantly improving the signal-to-noise ratio. The latter, in combination with a system that does not increase the beam divergence, brings the further advantage of a cleaner access to the low-Q region, which is recognized to be of fundamental interest for magnetism and for disordered materials, from glasses to biological systems.

5.
Rev Sci Instrum ; 88(5): 053905, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571465

RESUMO

To date, the BRISP spectrometer represents the state-of-the-art for every instrument aiming to perform Brillouin neutron scattering. Exploiting accurate ray-tracing McStas simulations, we investigate an improved configuration of the BRISP primary spectrometer to provide a higher flux at the sample position, while preserving all the present capabilities of the instrument. This configuration is based on a neutron guide system and is designed to fit the instrument platform with no modifications of the secondary spectrometer. These evaluations show that this setup can achieve a flux gain factor ranging from 3 to 6, depending on the wavelength. This can expand the experimental possibilities of BRISP towards smaller samples, possibly using also complex sample environments.

6.
J Phys Chem B ; 120(15): 3777-84, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27029782

RESUMO

Catanionic vesicles are formed spontaneously by mixing cationic and anionic dispersions in aqueous solution in suitable conditions. Because of spontaneity in formation, long-term stability, and easy modulation of size and charge, they have numerous advantages over conventional lipid-based vesicles. The dynamics of such vesicles is of interest in the field of biomedicine, as they can be used to deliver drug molecules into the cell membrane. Dynamics of catanionic vesicles based on sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) have been studied using incoherent elastic and quasielastic neutron scattering (QENS) techniques. Neutron scattering experiments have been carried out on two backscattering spectrometers, IRIS and IN16B, which have different energy resolutions and energy transfer windows. An elastic fixed-window scan carried out using IN16B shows a phase transition at ∼307 K during the heating cycle, whereas on cooling the transition occurred at ∼294 K. DSC results are found to be in close agreement with the elastic scan data. This transition is ascribed to a structural rearrangement from a multilamellar to a unilamellar phase [ Andreozzi J. Phys. Chem. B 2010 , 114 , 8056 - 8060 ]. It is found that a model in which the surfactant molecules undergo both lateral and internal motions can describe the QENS data quite well. While the data from IRIS have contributions from both dynamical processes, the data from IN16B probe only lateral motions, as the internal motions are too fast for the energy window of the spectrometer. It is found that, through the transition, the fraction of surfactant molecules undergoing lateral motion increases of a factor of 2 from the multilamellar to the unilamellar phase, indicating an enhanced fluidity of the latter. The lateral motion is found to be Fickian in nature, while the internal motion has been described by a localized translational diffusion model. The results reported here could have direct interest for a number of applications, such as molecular transport, and the effect of specific drug molecules or hormones through the membrane.


Assuntos
Compostos de Cetrimônio/química , Dodecilsulfato de Sódio/química , Cátions/química , Cetrimônio , Difusão , Transferência de Energia , Difração de Nêutrons , Temperatura
7.
J Phys Chem Lett ; 5(13): 2177-81, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26279530

RESUMO

The terahertz dynamics of human cells of the U937 line and their chromatin has been investigated by high-resolution inelastic X-ray scattering. To highlight its dynamical features in situ, nuclear DNA has been stained by uranyl-acetate salt. The general behavior of the collective dynamics of the whole cell is quite similar to that of bulk water, with a nearly wavevector-independent branch located at about 5 meV and a propagating mode with a linear trend corresponding to a speed of sound of 2900 ± 100 m/s. We provide the first experimental evidence for the existence of two branches also in the dispersion curves of chromatin. The high-energy mode displays an acoustic-like behavior with a sound velocity similar to unstained cells, but in this case the branch likely originates from the superposition of intramolecular DNA optic modes. A low-energy optic-like branch, distinctive of the chromatin moiety, is found at about 2.5 meV.

8.
J Phys Chem Lett ; 4(7): 1143-7, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26282034

RESUMO

A detailed investigation of the THz dynamics in glassy SiSe2 by means of neutron inelastic scattering is presented. To carefully map the translational dynamics and the region of the boson peak, we carried out two different experiments with sharp and broad resolutions coupled with a narrow and a wide kinematic range, respectively. Data show a complex pattern of excitations made up of three components. The most intense one is the prolongation of the longitudinal acoustic mode while two other modes appear in the boson peak region below 3 meV. We propose an interaction model that allows for a consistent identification of the nature of these modes.

9.
J Phys Condens Matter ; 24(6): 064105, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22277348

RESUMO

The dynamics of water as subtly perturbed by both the interaction with biomolecules and the variation of temperature and pressure has been investigated via neutron scattering spectroscopy. A measurement of inelastic neutron scattering devoted to the study of the coherent THz dynamics of water in a water-rich mixture with DNA (hydration level of 1 g DNA/15 g D(2)O) at room temperature is reported. The DNA hydration water coherent dynamics is characterised by the presence of collective modes, whose dispersion relations are similar to those observed in bulk water. These dispersion relations are well described by the interaction model developed in the case of bulk water, and the existence of a fast sound is experimentally demonstrated. The behaviour of the collective water dynamics was complemented by studying the single-particle dynamics of bulk water along the isotherm T = 298 K in the pressure range 0.1-350 MPa by means of incoherent scattering. This experiment is an attempt to simulate the change of the water molecular arrangement due to the interaction with DNA, by increasing the pressure as the presence of the biomolecule produces an increase in the density. An anomaly is found in the behaviour of the relaxation time derived from the quasi-elastic scattering signal, which can be related to the hypothetical second critical point in water. This anomaly and the transition from slow to fast sound take place in the same Q range, thus suggesting that the two phenomena could be related at some microscopic level.


Assuntos
DNA/química , Óxido de Deutério/química , Difração de Nêutrons , Pressão , Eletricidade Estática , Temperatura , Termodinâmica
10.
J R Soc Interface ; 6 Suppl 5: S635-40, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19640876

RESUMO

The spectral behaviour of a protein and its hydration water has been investigated through neutron scattering. The availability of both hydrogenated and perdeuterated samples of maltose-binding protein (MBP) allowed us to directly measure with great accuracy the signal from the protein and the hydration water alone. Both the spectra of the MBP and its hydration water show two distinct relaxations, a behaviour that is reminiscent of glassy systems. The two components have been described using a phenomenological model that includes two Cole-Davidson functions. In MBP and its hydration water, the two relaxations take place with similar average characteristic times of approximately 10 and 0.2 ps. The common time scales of these relaxations suggest that they may be a preferential route to couple the dynamics of the water hydrogen-bond network around the protein surface with that of protein fluctuations.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/ultraestrutura , Difração de Nêutrons/métodos , Água/química , Sítios de Ligação , Cinética , Proteínas Ligantes de Maltose , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Propriedades de Superfície
11.
Phys Rev Lett ; 101(14): 148104, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18851580

RESUMO

The low-frequency modes of protein hydration water are investigated by inelastic neutron scattering. Experiments on both protonated and fully deuterated maltose binding protein samples allow us to unambiguously single out the contribution from water. The low-energy vibrational density of states of hydration water at 100 K is similar to the density of states of high- and low-density amorphous ice, and quite different from that of simple forms of crystalline ice. This result can be related to the picture of hydration water mass density depending on the protein surface curvature, which supports its glassy behavior.


Assuntos
Proteínas de Transporte/química , Água/química , Gelo , Proteínas Ligantes de Maltose , Difração de Nêutrons/métodos , Análise Espectral/métodos
12.
J Phys Condens Matter ; 19(41): 415118, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28192330

RESUMO

We propose here a new interpretation of recent quasi-elastic neutron scattering (QENS) measurements on water. A line-shape analysis based on a stretched exponential ansatz for the time decay of density fluctuations enabled us to observe an anomalous dependence on the exchanged momentum of relevant relaxation parameters. We discuss this effect and relate it to an a priori uncorrelated anomaly, previously evidenced by diffraction measurements.

13.
Phys Rev Lett ; 96(8): 080402, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16606156

RESUMO

Fermion antibunching was observed on a beam of free noninteracting neutrons. A monochromatic beam of thermal neutrons was first split by a graphite single crystal, then fed to two detectors, displaying a reduced coincidence rate. The result is a fermionic complement to the Hanbury Brown and Twiss effect for photons.

14.
J Chem Phys ; 124(8): 084503, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16512725

RESUMO

We report on a high-resolution, high-statistics, quasielastic neutron scattering (QENS) experiment on liquid water, aimed at accurately measuring the pressure dependence of the single-particle dynamic response function at low wave vector transfers, namely, from 0.26 to 1.32 A(-1). High-pressure QENS data were collected along the T = 268 K isothermal path over the rather extended pressure range of 80 up to 350 MPa, a thermodynamic region so far unexplored by this microscopic technique. The analysis of the measured line shapes enabled us to draw a consistent picture of the wave vector and pressure dependences of the diffusion mechanisms in liquid water, against which the most recent models for water dynamics can be checked. In close similarity with the case of supercooled water, the relaxing-cage model was found to provide a quantitatively more accurate description of the molecular motions and their pressure evolution in liquid water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA