Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci Health B ; 55(4): 310-318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31782687

RESUMO

A simple and rapid method for the determination of dimethoate in water was developed based on the monitoring of the complex formation between bis 5-phenyldipyrrinate of nickel (II) and the herbicide dimethoate. The method showed a short response time (10 s), high selectivity (very low interference from other sulfate and salts), high sensitivity (limit of detection (LOD) 0.45 µM, limit of quantitation (LOQ) of 1.39 µM), and a Kd of 2.4 µM. Stoichiometry experiments showed that complex formation occurred with a 1:1 relation. The method was applied to different environmental water samples such as lagoon, stream, urban, and groundwater samples. The results indicated that independently from the water source, the method exhibited high precision (0.25-2.47% variation coefficient) and accuracy (84.42-115.68% recovery). In addition, the method was also tested using an effluent from a wastewater treatment plant from Mexico; however, the results indicated that the presence of organic matter had a pronounced effect on the detection.


Assuntos
Dimetoato/análise , Espectrofotometria/métodos , Poluentes Químicos da Água/análise , Água/análise , Dimetoato/química , Água Subterrânea/análise , Água Subterrânea/química , Herbicidas/análise , Herbicidas/química , Limite de Detecção , Rios/química , Sensibilidade e Especificidade , Análise Espectral , Águas Residuárias/análise , Água/química
2.
J Environ Sci Health B ; 51(12): 853-859, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27715499

RESUMO

The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and ß-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of ß-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.


Assuntos
Bactérias/metabolismo , Endossulfano/metabolismo , Malation/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Agricultura , Bactérias/genética , Biodegradação Ambiental , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Meios de Cultura/metabolismo , Endossulfano/análogos & derivados , Inseticidas/metabolismo , Isomerismo , México , Praguicidas/metabolismo
3.
J Environ Sci Health B ; 49(7): 498-504, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24813984

RESUMO

Organochlorine pesticides were intensively used in Mexico from 1950 until their ban and restriction in 1991. However, the presence of these compounds is commonly reported in many regions of the country. The aim of the present study was to identify and quantify residual organochlorine and organophosphorus pesticides in agricultural soil in Rio Verde region, San Luis Potosi state, which has been identified as possibly polluted by pesticides. Composed samples from 24 zones covering an area of approximately 5,440 ha were analyzed. The most frequently found pesticides were p,p'-DDT followed by ,p,p'-DDE, heptachlor, endosulfan and γ-HCH whose frequency rates were 100, 91, 83 and 54%, respectively. The concentration of p,p'-DDT in the crops grown in these soils was in the following order: chili > maize > tomato > alfalfa. The results obtained in this study show that p,p'-DDT values are lower or similar to those found in other agricultural regions of Mexico. Methyl and ethyl parathion were the most frequent organophosphate pesticide detected in 100% and 62.5% of the samples with average concentrations of 25.20 and 47.48 µg kg(-1), respectively. More research is needed to establish the background levels of pesticides in agricultural soils and their potential ecological and human health effects in this region.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Inseticidas/análise , Compostos Organofosforados/análise , Poluentes do Solo/análise , Agricultura , Cromatografia Gasosa-Espectrometria de Massas , México
4.
Microbiol Resour Announc ; : e0018824, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860796

RESUMO

To understand microbial metabolism in horticultural soils exposed to pesticides, genome sequencing of Bacillus subtilis sp. strain UAMC was performed. A total of 7,892 genes distributed across 40 contigs were identified. Among these, those related to the degradation of endosulfan such as FMNH2 monooxygenase, or cytochrome p450 stand out.

5.
Biodegradation ; 24(2): 215-25, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22847399

RESUMO

Stimulation of native microbial populations in soil by the addition of small amounts of secondary carbon sources (cosubstrates) and its effect on the degradation and theoretical mineralization of DDT [l,l,l-trichloro-2,2-bis(p-chlorophenyl)ethane] and its main metabolites, DDD and DDE, were evaluated. Microbial activity in soil polluted with DDT, DDE and DDD was increased by the presence of phenol, hexane and toluene as cosubstrates. The consumption of DDT was increased from 23 % in a control (without cosubstrate) to 67, 59 and 56 % in the presence of phenol, hexane and toluene, respectively. DDE was completely removed in all cases, and DDD removal was enhanced from 67 % in the control to ~86 % with all substrates tested, except for acetic acid and glucose substrates. In the latter cases, DDD removal was either inhibited or unchanged from the control. The optimal amount of added cosubstrate was observed to be between 0.64 and 2.6 mg C [Formula: see text]. The CO2 produced was higher than the theoretical amount for complete cosubstrate mineralization indicating possible mineralization of DDT and its metabolites. Bacterial communities were evaluated by denaturing gradient gel electrophoresis, which indicated that native soil and the untreated control presented a low bacterial diversity. The detected bacteria were related to soil microorganisms and microorganisms with known biodegradative potential. In the presence of toluene a bacterium related to Azoarcus, a genus that includes species capable of growing at the expense of aromatic compounds such as toluene and halobenzoates under denitrifying conditions, was detected.


Assuntos
Biodegradação Ambiental , DDT/metabolismo , Diclorodifenil Dicloroetileno/metabolismo , Hidrocarbonetos Clorados/metabolismo , Microbiologia do Solo
6.
Folia Microbiol (Praha) ; 66(6): 973-981, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34263383

RESUMO

Endosulfan is an organochlorine pesticide included in the Stockholm Convention for Persistent Organic Compounds. The utilization of endosulfan as the sole source of carbon and its mineralization was evaluated using pure strains of Bacillus subtilis, Bacillus pseudomycoides, Peribacillus simplex, Enterobacter cloacae, Achromobacter spanius, and Pseudomonas putida, isolated from soil with historical pesticide use. The consumption of the α isomer of endosulfan by five of the six strains studied was higher than 95%, while B. subtilis degraded only 76% of the initial concentration (14 mg/L). On the other hand, the degradation of the ß isomer was approximately 86% of the initial concentration (6 mg/L) by B. subtilis, P. simplex, and B. pseudomycoides and 95% by P. putida, E. cloacae, and A. spanius. The ability of A. spanius, P. simplex, and B. pseudomycoides to degrade endosulfan has not been previously reported. The production of endosulfan lactone by the Bacillus strains, as well as A. spanius and P. putida, indicated that endosulfan was degraded by the hydrolytic pathway.


Assuntos
Inseticidas , Poluentes do Solo , Achromobacter , Bacillus , Biodegradação Ambiental , Endossulfano , Horticultura , Solo , Microbiologia do Solo
7.
J Hazard Mater ; 321: 681-689, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27694047

RESUMO

Abiotic and biotic processes can be used to remediate DDX (DDT, DDD, DDE, and DDNS) contaminated soils; these processes can be fostered using specific carbon-amendments to stimulate particular soil indigenous microbial communities to improve rates or extent of degradation. In this study, toluene and glycerol were evaluated as cosubstrates under aerobic and anoxic conditions to determine the degradation efficiencies of DDX and to elucidate possible degradation mechanisms. Slurry microcosms experiments were performed during 60 days using pretreated soil with zero-valent iron (ZVI). Toluene addition enhanced the percentage of degradation of DDX. DDNS was the main compound degraded (around 86%) under aerobic conditions, suggesting cometabolic degradation of DDX by toluene-degrading soil bacteria. Glycerol addition under anoxic conditions favored the abiotic degradation of DDX mediated by sulfate-reducing bacteria activity, where DDT was the main compound degraded (around 90%). The 16S rDNA metagenomic analyses revealed Rhodococcus ruber and Desulfosporosinus auripigmenti as the predominant bacterial species after 40 days of treatment with toluene and glycerol additions, respectively. This study provides evidence of biotic and abiotic DDX degradation by the addition of toluene and glycerol as cosubstrates in ZVI pretreated DDX-contaminated soil.


Assuntos
Biodegradação Ambiental , DDT/análogos & derivados , Glicerol/química , Ferro/química , Poluentes do Solo/análise , Tolueno/química , Aerobiose , Anaerobiose , DNA Bacteriano/genética , Microbiologia do Solo
8.
J Hazard Mater ; 131(1-3): 112-7, 2006 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-16239067

RESUMO

The stimulation of the microbial population by a more bioavailable supplementary carbon source and by a surfactant pretreatment was studied in petroleum hydrocarbon-polluted soils bioremediation. Two types of soils were used, Soil A which had been recently polluted and the aged Soil B. They contained 52.4 and 50.4 g of total petroleum hydrocarbons per kg of dry soil, respectively. The effect of passing a continuous small stream of air containing a low concentration of gaseous toluene through packed 0.5 l (Ø=5.5 cm) columns was studied. For Soil A, after 62 days the THPs degradation was 28% higher in the toluene treated columns than in controls. In aged Soil B the effect of toluene was not significant, probably due to bioavailability limitations. With Soil B, the combined effect of toluene as cosubstrate and a surfactant pretreatment was studied and the hydrocarbons degradation was 29% higher in the toluene-amended columns than in the controls. Toluene removal was higher than 99% in all cases. Surfactant addition increased hydrocarbon degradation when toluene was also added suggesting that the biological reaction was the limiting process. The study shows the possibilities of using gaseous substrates, such as toluene, for the in situ or ex situ treatment of petroleum hydrocarbon-polluted soil in processes limited by the biological reaction. The main advantage of the treatment is that the compound can be easily and directly delivered to the polluted soil through the venting system.


Assuntos
Poluentes do Solo/metabolismo , Tolueno/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Biomassa , Dióxido de Carbono/síntese química , Gases , Tensoativos
9.
Environ Sci Technol ; 37(4): 805-10, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12636283

RESUMO

Laboratory experiments were conducted to study the potential of adding gaseous toluene, as a readily degradable carbon source, to enhance phenanthrene mineralization in polluted soil (1,000 mg/kg(dry soil)) aged for 400 days. Experiments were conducted in 0.5-L column reactors packed with a mixture of (80:20 w(wet)/w(wet)) spiked soil and vermiculite and fed with 1 g m(-3)reactor h(-1) toluene load in air. Removal efficiencies of 100% for toluene and greater than 95% for phenanthrene were obtained in 190 h. Evolved CO2 showed that phenanthrene mineralization increased from 39% to 86% in columns treated with gaseous toluene. Phthalic acid was identified as the principal soluble intermediate, which accumulated when no toluene was added. Increased phenanthrene uptake and mineralization with toluene can be attributed to increased biomass and the induction of enzymes involved in the intermediate mineralization. In microcosm experiments, phthalic acid mineralization increased from 19% to 81% within 50 h in the presence of toluene. Experiments with 14C-labeled phenanthrene confirmed the enhancement of phenanthrene mineralization from 45% to 83% in 385 h with toluene as a second carbon source. The results indicate thatthe addition of an appropriate gaseous cosubstrate could be an adequate strategy to enhance mineralization of PAHs in soil.


Assuntos
Fenantrenos/metabolismo , Poluentes do Solo/metabolismo , Tolueno/metabolismo , Biodegradação Ambiental , Biomassa , Monitoramento Ambiental , Gases , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA