Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 38(19): 5996-6003, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35522966

RESUMO

We develop a route to prepare two types of cellulose nanocrystals (CNCs, CNC1 and CNC2) from a unique biomass resource, the fruit shell of Camellia oleifera Abel (SCOA), by integrating sulfuric acid hydrolysis and high-pressure homogenization and examine the effects of hydrolysis time on characteristics of the CNCs during the process. The CNCs exhibit different evolutions in size, morphology, surface charge, and crystallinity with increasing hydrolysis time. While both the CNCs have high crystallinity, CNC1 is of rod-like character with a relatively low aspect ratio, and CNC2 exhibits a hairy appearance with a high aspect ratio. We highlight that controlled acid hydrolysis contributes to the formation of weak spots with an increased susceptibility for homogenizing cellulosic solid residues into hairy CNCs. This is a good step toward tailoring CNC properties in a conventional and scalable approach to maximize their potential applications.


Assuntos
Celulose , Nanopartículas , Celulose/química , Hidrólise , Nanopartículas/química
2.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500550

RESUMO

Chemotherapy is a common method for tumor treatment. However, the non-specific distribution of chemotherapeutic drugs causes the death of normal cells. Nanocarriers, particularly mesoporous carriers, can be modified to achieve targeted and controlled drug release. In this study, mesoporous polydopamine (MPDA) was used as a carrier for the antitumor drug doxorubicin (DOX). To enhance the release efficiency of DOX in the tumor microenvironment, which contains high concentrations of glutathione (GSH), we used N,N-bis(acryloyl)cysteamine as a cross-linking agent to encapsulate the surface of MPDA with fucoidan (FU), producing MPDA-DOX@FU-SS. MPDA-DOX@FU-SS was characterized via transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS), and its antitumor efficacy in vitro was investigated. The optimal conditions for the preparation of MPDA were identified as pH 12 and 20 °C, and the optimal MPDA-to-FU ratio was 2:1. The DOX release rate reached 47.77% in an in vitro solution containing 10 mM GSH at pH 5.2. When combined with photothermal therapy, MPDA-DOX@FU-SS significantly inhibited the growth of HCT-116 cells. In conclusion, MPDA-DOX@FU-SS may serve as a novel, highly effective tumor suppressor that can achieve targeted drug release in the tumor microenvironment.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Doxorrubicina , Nanopartículas/química , Liberação Controlada de Fármacos , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
Molecules ; 23(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941809

RESUMO

In this study, novel composite titanium-based metal-organic framework (MOF) beads were synthesized from titanium based metal organic framework MIL-125 and chitosan (CS) and used to remove Pb(II) from wastewater. The MIL-125-CS beads were prepared by combining the titanium-based MIL-125 MOF and chitosan using a template-free solvothermal approach under ambient conditions. The surface and elemental properties of these beads were analyzed using scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopies, as well as thermal gravimetric analysis. Moreover, a series of experiments designed to determine the influences of factors such as initial Pb(II) concentration, pH, reaction time and adsorption temperature was conducted. Notably, it was found that the adsorption of Pb(II) onto the MIL-125-CS beads reached equilibrium in 180 min to a level of 407.50 mg/g at ambient temperature. In addition, kinetic and equilibrium experiments provided data that were fit to the Langmuir isotherm model and pseudo-second-order kinetics. Furthermore, reusability tests showed that MIL-125-CS retained 85% of its Pb(II)-removal capacity after five reuse cycles. All in all, we believe that the developed MIL-125-CS beads are a promising adsorbent material for the remediation of environmental water polluted by heavy metal ions.


Assuntos
Quitosana/química , Chumbo/química , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Metais Pesados/química
4.
Langmuir ; 33(1): 235-242, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27936767

RESUMO

The flow properties of two kinds of cellulose nanocrystal (CNC) rods with different aspect ratios and similar zeta potentials in aqueous suspensions have been investigated. The aqueous CNC suspensions undergo a direct transition from dilute solution to colloidal glass instead of phase separation with the increasing CNC concentration. The viscosity profile shows a single shear-thinning behavior over the whole range of shear rates investigated. The shear-thinning behavior becomes stronger with the increasing CNC concentration. The viscosity is much higher for the unsonicated suspension when compared with the sonicated suspensions. The CNC rods appear arrested without alignment with an increasing shear rate from the small-angle light scattering patterns. The arrested glass state results from electric double layers surrounding the CNC rods, which give rise to long-ranged repulsive interactions. For the first time, we demonstrate that, within a narrow range of CNC concentrations, a shear-induced breakup process of the CNC aggregates exists when the shear rate is over a critical value and that the process is reversible in the sense that the aggregates can be reformed. We discuss the competition between the shear-induced breakup and the concentration-driven aggregation based on the experimental observations. The generated aggregate structure during the breakup process is characterized by a fractal dimension of 2.41. Furthermore, we determine two important variables-the breakup rate and the characteristic aggregate size-and derive analytical expressions for their evolution during the breakup process. The model predictions are in quantitative agreement with the experimental results.


Assuntos
Celulose , Nanopartículas , Suspensões , Viscosidade , Água
5.
Anal Bioanal Chem ; 409(28): 6643-6653, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28940000

RESUMO

A novel adsorbent based on the surface of magnetic graphene oxide-grafted cellulose nanocrystal molecularly imprinted polymers (Mag@GO-g-CNCs@MIPs) was developed for the selective extraction and fast adsorption of fluoroquinolones (FQs) from river water samples. Cellulose nanocrystals (CNCs) were grafted onto activated graphene oxide (GO), and the surfaces of the obtained magnetic GO-g-CNC particles were molecularly imprinted with polymers using ofloxacin (OFX) as a template molecule and methacrylic acid (MAA) as a functional monomer. The resulting Mag@GO-g-CNCs@MIP material was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometry, and X-ray photoelectron spectroscopy. Under optimum adsorption conditions, the Mag@GO-g-CNCs@MIPs with large specific surface area were easily collected and separated using an external magnetic field. Mag@GO-g-CNCs@MIPs exhibited an ultra-fast adsorption profile for FQs (5 min to achieve the maximum adsorption capacity of 74 mg/g), with imprinting factor values ranging from 1.5 to 3.1. High recognition selectivity towards nine FQs from real river water samples was established through coupling with high-performance liquid chromatography (HPLC), and the recovery of samples spiked with nine FQs was found to be in the range of 79.2-96.1%, with a detection limit ranging from 6.5 to 51 ng/g. Moreover, the data obtained adhered to the Freundlich isotherm model, and the adsorption kinetics followed a pseudo-second-order model. Finally, the Mag@GO-g-CNCs@MIPs could be regenerated and reused for seven consecutive cycles with only a 13% drop in adsorption capacity, indicating its effective application as a new, reusable, and selective adsorbent for the enrichment and separation of FQs from aqueous solutions.

6.
Biotechnol Appl Biochem ; 64(3): 392-399, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27098203

RESUMO

An effective epoxide hydrolase (EH) production strain was mutagenized using 60 Co gamma and UV irradiation. Among positive mutant strains, the EH activity of C2-44 reached 33.7 U/g, which was 267% as much as that of the original Aspergillus niger ZJB-09103. Compared with the wild type, there were significant changes in morphology for C2-44, including the color of mycelia on the slants and the shape of conidial head. In addition, glucose and soybean cake were the optimal carbon and nitrogen source in terms of EH activity for the mutant C2-44 instead of soluble starch and peptone for the wild-type strain. The reaction time required to reach 99% enantiomeric excesses of (S)-epichlorohydrin from racemic substrate was shortened significantly by the mutant C2-44. This phenomenon was probably explained by the higher Vmax for hydrolysis of racemic epichlorohydrin by C2-44 compared with Aspergillus niger ZJB-09103.


Assuntos
Aspergillus niger , Epóxido Hidrolases , Proteínas Fúngicas , Raios gama , Mutagênese/efeitos da radiação , Raios Ultravioleta , Aspergillus niger/enzimologia , Aspergillus niger/genética , Epóxido Hidrolases/biossíntese , Epóxido Hidrolases/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética
7.
Chirality ; 29(3-4): 140-146, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28321927

RESUMO

Trichlorfon (TF), an organophosphorus insecticide, has been widely used in seawater aquaculture; it is easily degraded to the highly toxic insecticide, dichlorvos (DDVP). In this study, the enantioseparation of TF enantiomers, as well as their degradation behavior and product (DDVP) formation in mariculture pond sediments, was investigated. The results show that both TF enantiomers degrade into DDVP, which is the main degradation product. Furthermore, S-(+)-TF is preferentially degraded under natural conditions, suggesting that TF enantiomers degrade enantioselectively. Nevertheless, the degradation behavior of TF enantiomers is not enantiospecific under sterile conditions. The formation of DDVP and the enantiospecific degradation of TF enantiomers are attributed to the activities of microbes present in the sediments.

8.
Chirality ; 28(11): 737-743, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27791319

RESUMO

In this study the analysis and confirmation of flumequine enantiomers in rat plasma by ultra-fast liquid chromatography coupled with electron spray ionization mass spectrometry (using propranolol as an internal standard [IS]) was developed and validated. Plasma samples were prepared by liquid-liquid extraction using methyl tert-butyl ether as the extraction solvent. Direct resolution of the R- and S-isomers was performed on a CHIRALCEL OJ-RH column (4.6 × 150 mm, 5 µm) using acetonitrile / 0.1% formic acid / 1 mM ammonium acetate as the mobile phase. Detection was operated by electron spray ionization in the selected ion monitoring and positive ion mode. The target ions at m/z 262.1 and m/z 260.1 were selected for the quantification of the enantiomers and IS, respectively. The linear range was 0.5-500 ng/mL. The precisions (coefficient of variation, CV%) and recoveries were 1.43-8.68 and 94.24-106.76%, respectively. The lowest quantitation limit for both enantiomers is 0.5 ng/mL, which is sensitive enough to be applied to sample analysis in other related studies.


Assuntos
Cromatografia Líquida/métodos , Fluoroquinolonas/sangue , Fluoroquinolonas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Extração Líquido-Líquido , Éteres Metílicos/química , Propranolol/sangue , Ratos , Reprodutibilidade dos Testes , Estereoisomerismo
9.
Chirality ; 28(9): 649-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27483447

RESUMO

In this work, flumequine (FLU) enantiomers were separated using a Chiralpak OD-H column, with n-hexane-ethanol (20:80, v/v) as the mobile phase at a flow rate of 0.6 mL/min. Solid phase extraction (SPE) was used for cleanup and enrichment. The limit of detection, limit of quantitation, linearity, precision, and intra/interday variation of the chiral high-performance liquid chromatography (HPLC) method were determined. The developed method was then applied to investigate the degradation behavior of FLU enantiomers in mariculture pond water samples. The results showed that the degradation of FLU enantiomers under natural, sterile, or dark conditions was not enantioselective. Chirality 28:649-655, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fluoroquinolonas/análise , Fluoroquinolonas/química , Poluentes Químicos da Água/análise , Aquicultura , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão/instrumentação , Lagoas , Extração em Fase Sólida , Estereoisomerismo , Poluentes Químicos da Água/química
10.
Biomed Chromatogr ; 30(3): 426-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26179954

RESUMO

(S)-(-)-Ofloxacin and (R)-(+)-ofloxacin concentrations in the plasma of Pagrosomus major after drug treatment were detected by chiral high-performance liquid chromatography, and various pharmacokinetic parameters were calculated from these data. The elimination half-life of (S)-(-)-ofloxacin was significantly shorter than that of the (R)-(+) enantiomer. (S)-(-)-Ofloxacin also had a significantly lower maximum plasma concentration, area under the concentration-time curve from zero to infinity, and mean residence time than (R)-(+)-ofloxacin. However, the apparent volume of distribution and total body clearance of (S)-(-)-ofloxacin were greater than those of (R)-(+)-ofloxacin. The ratio of the (S)-(-)- to (R)-(+)-ofloxacin plasma concentration was always <1.0. Together, these data suggest that (S)-(-)-ofloxacin was preferentially excreted and (R)-(+)-ofloxacin was preferentially absorbed. Although the difference in pharmacokinetic parameters was small, the metabolic behavior of the ofloxacin enantiomers in P. major was enantioselective.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ofloxacino/sangue , Ofloxacino/farmacocinética , Dourada , Animais , Limite de Detecção , Modelos Lineares , Ofloxacino/química , Reprodutibilidade dos Testes , Estereoisomerismo
11.
Molecules ; 21(7)2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27428943

RESUMO

A new method for the isolation and enrichment of ofloxacin enantiomers from fish samples was developed using magnetic molecularly imprinted polymers (MMIPs). These polymers can be easily collected and rapidly separated using an external magnetic field, and also exhibit a high specific recognition for ofloxacin enantiomers. The preparation of amino-functionalized MMIPs was carried out via suspension polymerization and a ring-opening reaction using rac-ofloxacin as a template, ethylenediamine as an active group, glycidyl methacrylate and methyl methacrylate as functional monomers, divinylbenzene as a cross-linker, and Fe3O4 nanoparticles as magnetic cores. The characteristics of the MMIPs were assessed using transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) measurements. Furthermore, the adsorption properties were determined using Langmuir and Freundlich isotherm models. The conditions for use of these MMIPs as magnetic solid-phase extraction (MSPE) sorbents, including pH, adsorption time, desorption time, and eluent, were investigated in detail. An extraction method using MMIPs coupled with high performance liquid chromatography (HPLC) was developed for the determination of ofloxacin enantiomers in fish samples. The limits of quantitation (LOQ) for the developed method were 0.059 and 0.067 µg∙mL(-1) for levofloxacin and dextrofloxacin, respectively. The recovery of ofloxacin enantiomers ranged from 79.2% ± 5.6% to 84.4% ± 4.6% and ofloxacin enantiomers had good linear relationships within the concentration range of 0.25-5.0 µg∙mL(-1) (R² > 0.999). The obtained results demonstrate that MSPE-HPLC is a promising approach for preconcentration, purification, and simultaneous separation of ofloxacin enantiomers in biomatrix samples.


Assuntos
Peixes , Nanopartículas de Magnetita/química , Impressão Molecular , Ofloxacino/química , Ofloxacino/isolamento & purificação , Polímeros/química , Adsorção , Animais , Cromatografia Líquida de Alta Pressão , Nanopartículas de Magnetita/ultraestrutura , Impressão Molecular/métodos , Polímeros/síntese química , Extração em Fase Sólida/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
12.
J Colloid Interface Sci ; 678(Pt A): 1060-1074, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39236435

RESUMO

The combination of chemodynamic therapy (CDT) with photothermal therapy (PTT) is a promising approach to enhance antitumor efficacy of chemotherapeutics. In this paper, we developed novel copper-chelated polydopamine (PDA) nanoparticles (NPs) functionalized with hyaluronic acid (HA) (Cu-PDA-HA NPs) to induce apoptosis and cuproptosis-induced cell death, synergistically combining PTT and CDT. Experimental results revealed that Cu-PDA-HA NPs can respond to excessive glutathione (GSH) and hydrogen peroxide (H2O2) in the tumor microenvironment (TME), which will enable their specific degradation, thereby leading to efficient accumulation of Cu2+ within tumor cells. The released Cu2+ ions were reduced by GSH to generate Cu+, which catalyzed in situ Fenton-like reactions to produce cytotoxic hydroxyl radicals (·OH), disrupting cellular redox homeostasis and promoting apoptosis-related CDT. Meanwhile, the photothermal effect of the Cu-PDA-HA NPs could enhance oxidative stress within the tumor by elevating the temperature and subsequent ·OH production. The enhanced oxidative stress made tumor cells more vulnerable to cuproptosis-induced toxicity. Furthermore, in vivo experiments demonstrated that Cu-PDA-HA NPs can still undergo a temperature increase of 18.9°C following 808 nm near-infrared irradiation (1.0 W/cm2, 5 min). Meanwhile, Cu-PDA-HA NPs were able to induce oligomerization of dihydrolipoamide S-acetyltransferase (DLAT) and down-regulate Fe-S cluster proteins such as ferredoxin (FDX1), thereby activating cuproptosis. Therefore, this study provides a novel approach for designing multifunctional nanoparticles with on-demand Cu2+ release and offers a fresh perspective for exploring synergistic therapeutic strategies involving CDT/PTT/apoptosis/cuproptosis.

13.
Carbohydr Polym ; 345: 122550, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227117

RESUMO

In the realm of natural polysaccharides, hydrogen bonding is a prevalent feature, yet its role in enhancing photocatalytic antimicrobial properties has been underexplored. In this paper, heterojunctions formed by graphene oxide (GO) and ZIF-8 were locked in sodium alginate/ carboxylated cellulose nanocrystals via hydrogen bonding networks, designated as SCGZ. The SCGZ films exhibit superior photocatalytic performance compared to either ZIF-8 or heterojunctions. This enhancement is primarily due to two key factors: firstly, the hydrogen bonding network significantly enhances the transfer of protons and holes, thereby improving the separation efficiency of photo-generated carriers; secondly, the hydrogen bonding between the layers facilitates a more efficient charge transfer, which expedites the movement of electrons from ZIF-8 to GO upon illumination. In vitro studies demonstrated that the SCGZ films possess remarkable antibacterial capabilities, achieving 99.75 % and 99.61 % inhibition rates against S. aureus and E. coli, respectively. In vivo animal experiments have shown that SCGZ films can significantly accelerate the healing process of damaged tissues, with a healing efficiency of up to 90.5 %. This research provides additional insights into the development of natural polysaccharide-based multi­hydrogen bonded macromolecules with enhanced photocatalytic properties.


Assuntos
Alginatos , Antibacterianos , Celulose , Escherichia coli , Grafite , Nanopartículas , Staphylococcus aureus , Cicatrização , Alginatos/química , Alginatos/farmacologia , Celulose/química , Celulose/farmacologia , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Animais , Grafite/química , Grafite/farmacologia , Esterilização/métodos , Ligação de Hidrogênio , Camundongos , Testes de Sensibilidade Microbiana , Catálise
14.
Pharmaceutics ; 16(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675173

RESUMO

Disulfiram (DSF) degrades to diethyldithiocarbamate (DTC) in vivo and coordinates with copper ions to form CuET, which has higher antitumor activity. In this study, DSF@CuMSN-PDA nanoparticles were prepared using mesoporous silica with copper ions, DSF as a carrier, and polydopamine (PDA) as a gate system. The nanoparticles selectively released CuET into tumor tissue by taking advantage of the tumor microenvironment, where PDA could be degraded. The release ratio reached 79.17% at pH 5.0, indicating pH-responsive drug release from the nanoparticles. The PDA-gated system provided the nanoparticles with unique photothermal conversion performance and significantly improved antitumor efficiency. In vivo, antitumor experiments showed that the designed DSF@CuMSN-PDA nanoparticles combined with near-infrared light (808 nm, 1 W/cm2) irradiation effectively inhibited tumor growth in HCT116 cells by harnessing the combined potential of chemotherapy and photothermal therapy; a synergistic effect was achieved. Taken together, these results suggest that the designed DSF@CuMSN-PDA construct can be employed as a promising candidate for combined chemo-photothermal therapy.

15.
J Colloid Interface Sci ; 657: 1-14, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38029524

RESUMO

Nanodrug delivery systems (NDSs), such as mesoporous silica, have been widely studied because of their high specific surface area, high loading rate, and easy modification; however, they are not easily metabolized and excreted by the human body and may be potentially harmful. Hence, we aimed to examine the synergistic anti-tumor effects of ex vivo chemo-photothermal therapy to develop a rational and highly biocompatible treatment protocol for tumors. We constructed a biodegradable NDS using organic mesoporous silica with a tetrasulfide bond structure, copper sulfide core, and folic acid-modified surface (CuS@DMONs-FA-DOX-PEG) to target a tumor site, dissociate, and release the drug. The degradation ability, photothermal conversion ability, hemocompatibility, and in vitro and in vivo anti-tumor effects of the CuS@DMONs-FA-DOX-PEG nanoparticles were evaluated. Our findings revealed that the nanoparticles encapsulated in copper sulfide exhibited significant photothermal activity and optimal photothermal conversion rate. Further, the drug was accurately delivered and released into the target tumor cells, annihilating them. This study demonstrated the successful preparation, safety, and synergistic anti-tumor effects of chemo-photothermal therapeutic nanomaterials.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Doxorrubicina , Cobre/farmacologia , Cobre/química , Terapia Fototérmica , Dióxido de Silício/química , Fototerapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/química , Sulfetos/farmacologia , Concentração de Íons de Hidrogênio
16.
J Colloid Interface Sci ; 674: 9-18, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908062

RESUMO

Disulfiram (DSF) metabolites exhibit antitumor properties when bound to Cu2+. This combination also promotes the generation of reactive oxygen species (ROS), ultimately leading to tumor cell death. In this study, CuO2 served as a carrier for DSF, forming a dual-drug delivery system with Cu2+ and DSF encapsulated in polydopamine (PDA). In the final delivery system, CuO2 (DSF-CuO2@PDA) was hydrolyzed at the tumor site, releasing both Cu2+ and H2O2. Cu2+ reacts with DSF metabolites to form Bis(diethyldithiocarbamate)-Cu (CuET), which triggers a Fenton-like reaction that generates ROS. Chemotherapy and chemodynamic therapy exhibited significant tumor-suppressive capabilities, with an inhibition rate of 61 %. In addition, the DSF-CuO2@PDA complex demonstrated superlative tumor-targeting ability and biocompatibility.


Assuntos
Antineoplásicos , Cobre , Dissulfiram , Portadores de Fármacos , Dissulfiram/farmacologia , Dissulfiram/química , Cobre/química , Cobre/farmacologia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química , Animais , Camundongos , Polímeros/química , Polímeros/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Indóis/química , Indóis/farmacologia , Tamanho da Partícula , Proliferação de Células/efeitos dos fármacos , Propriedades de Superfície , Ensaios de Seleção de Medicamentos Antitumorais
17.
J Colloid Interface Sci ; 675: 1040-1051, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39008922

RESUMO

Open wounds are susceptible to bacterial infections, and antibiotics are commonly used to treat these infections. However, widespread use of antibiotics will easily induce bacterial resistance. Green antibacterial agents serve as excellent alternative for antibiotics in infection therapy. In this work, polydopamine (PDA) was used to modify the surface of ZIF-8, which not only enhances the water stability of Zeolitic imidazolate framework-8(ZIF-8) but also improves its photocatalytic and photothermal capabilities. ZIF-8@PDA was incorporated into carboxylated chitosan (CCS) films as an antibacterial agent, the resulting ZIF-8@PDA-CCS films exhibit excellent ionic/photocatalytic/photothermal antibacterial performance. The film exhibited an impressive 99% in vitro bacterial inhibition rate. After treatment with ZIF-8@PDA-CCS, the bacteria in infected wounds can be completely suppressed. These findings suggest that ZIF-8@PDA-CCS could serve as a potentional antibacterial dressing.


Assuntos
Antibacterianos , Quitosana , Hidrogéis , Imidazóis , Indóis , Polímeros , Cicatrização , Indóis/química , Indóis/farmacologia , Quitosana/química , Quitosana/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química , Polímeros/farmacologia , Cicatrização/efeitos dos fármacos , Catálise , Hidrogéis/química , Hidrogéis/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Processos Fotoquímicos , Zeolitas/química , Zeolitas/farmacologia , Animais , Camundongos , Tamanho da Partícula , Propriedades de Superfície
18.
Adv Healthc Mater ; 13(22): e2400494, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801122

RESUMO

Infected wounds pose challenges such as exudate management, bacterial infections, and persistent inflammation, making them a significant challenge for modern dressings. To address these issues in infected wounds more effectively, aerogel-hydrogel biphase gels based on dextran are developed. The gel introduced in this study exhibits antibacterial and anti-inflammatory properties in the process of wound therapy, contributing to accelerated wound healing. The aerogel phase exhibits exceptional water-absorption capabilities, rapidly soaking up exudate from infected wound, thereby fostering a clean and hygienic wound healing microenvironment. Concurrently, the aerogel phase is enriched with hydrogen sulfide donors. Following water absorption and the formation of the hydrogel phase, it enables the sustained release of hydrogen sulfide around the wound sites. The experiments confirm that hydrogen sulfide, by promoting M2 macrophage differentiation and reducing the levels of inflammatory factors, effectively diminishes local inflammation levels at the wound site. Furthermore, the sodium copper chlorophyllin component within the hydrogel phase demonstrates effective antibacterial properties through photodynamic antimicrobial therapy, providing a viable solution to wound infection challenges.


Assuntos
Antibacterianos , Bandagens , Dextranos , Hidrogéis , Inflamação , Cicatrização , Dextranos/química , Dextranos/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Inflamação/tratamento farmacológico , Camundongos , Infecção dos Ferimentos/tratamento farmacológico , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , Masculino
19.
J Colloid Interface Sci ; 660: 637-646, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266345

RESUMO

The Cu2+ complex formed by the coordination of disulfiram (DSF) metabolite diethyldithiocarbamate (DTC), Cu(DTC)2, can effectively inhibit tumor growth. However, insufficient Cu2+ levels in the tumor microenvironment can impact tumor-suppressive effects of DTC. In this study, we proposed a Cu2+ and DSF tumor microenvironment-targeted delivery system. This system utilizes hollow mesoporous silica (HMSN) as a carrier, after loading with DSF, encases it using a complex of tannic acid (TA) and Cu2+ on the outer layer. In the slightly acidic tumor microenvironment, TA/Cu undergoes hydrolysis, releasing Cu2+ and DSF, which further form Cu(DTC)2 to inhibit tumor growth. Additionally, Cu2+ can engage in a Fenton-like reaction with H2O2 in the tumor microenvironment to form OH, therefore, chemodynamic therapy (CDT) and Cu(DTC)2 are used in combination for tumor therapy. In vivo tumor treatment results demonstrated that AHD@TA/Cu could accumulate at the tumor site, achieving a tumor inhibition rate of up to 77.6 %. This study offers a novel approach, circumventing the use of traditional chemotherapy drugs, and provides valuable insights into the development of in situ tumor drug therapies.


Assuntos
Ditiocarb , Neoplasias , Polifenóis , Humanos , Ditiocarb/farmacologia , Cobre/farmacologia , Dióxido de Silício/farmacologia , Peróxido de Hidrogênio/metabolismo , Linhagem Celular Tumoral , Dissulfiram/farmacologia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
20.
Mar Drugs ; 11(10): 3582-600, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24084781

RESUMO

This study was carried out to investigate the protective effects of chitosan nanoparticles (CNP) against hydrogen peroxide (H2O2)-induced oxidative damage in murine macrophages RAW264.7 cells. After 24 h pre-incubation with CNP (25-200 µg/mL) and chitosan (CS) (50-200 µg/mL, as controls), the viability loss in RAW264.7 cells induced by H2O2 (500 µM) for 12 h was markedly restored in a concentration-dependent manner as measured by MTT assay (P < 0.05) and decreased in cellular LDH release (P < 0.05). Moreover, CNP also exerted preventive effects on suppressing the production of lipid peroxidation such as malondialdehyde (MDA) (P < 0.05), restoring activities of endogenous antioxidant including superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) (P < 0.05), along with increasing total antioxidant capacity (T-AOC) (P < 0.05). In addition, pre-incubation of CNP with RAW264.7 cells for 24 h resulted in the increase of the gene expression level of endogenous antioxidant enzymes, such as MnSOD and GSH-Px (P < 0.05). At the same concentration, CNP significantly decreased LDH release and MDA (P < 0.05) as well as increased MnSOD, GSH-Px, and T-AOC activities (P < 0.05) as compared to CS. Taken together, our findings suggest that CNP can more effectively protect RAW264.7 cells against oxidative stress by H2O2 as compared to CS, which might be used as a potential natural compound-based antioxidant in the functional food and pharmaceutical industries.


Assuntos
Quitosana/farmacologia , Peróxido de Hidrogênio/farmacologia , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Animais , Células Cultivadas , Glutationa Peroxidase/metabolismo , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA