Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293170

RESUMO

Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.


Assuntos
Aquaporinas , Aquaporinas/metabolismo , Simulação de Dinâmica Molecular , Água/metabolismo , Biofísica , Permeabilidade da Membrana Celular
2.
Biophys J ; 104(1): 85-95, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23332061

RESUMO

This work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments.


Assuntos
Aquaporina 1/metabolismo , Membrana Celular/fisiologia , Ativação do Canal Iônico , Animais , Simulação por Computador , Elasticidade , Gramicidina/farmacologia , Humanos , Modelos Biológicos , Oócitos/fisiologia , Osmose , Tensão Superficial , Xenopus laevis
3.
Eur Biophys J ; 42(4): 223-39, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23274929

RESUMO

Present knowledge obtained by molecular dynamics (MD) simulation studies regarding the dynamics of water, both in the vicinity of biological membranes and within the proteinaceous water channels, also known as aquaporins (AQPs), is reviewed. A brief general summary of the water models most extensively employed in MD simulations (SPC, SPC/E, TIP3P, TIP4P), indicating their most relevant pros and cons, is likewise provided. Structural considerations of water are also discussed, based on different order parameters, which can be extracted from MD simulations as well as from experiments. Secondly, the behaviour of water in the neighbourhood of membranes by means of molecular dynamics simulations is addressed. Consequently, the comparison with previous experimental evidence is pointed out. In living cells, water is transported across the plasma membrane through the lipid bilayer and the aforementioned AQPs, which motivates this review to focus mostly on MD simulation studies of water within AQPs. Relevant contributions explaining peculiar properties of these channels are discussed, such as selectivity and gating. Water models used in these studies are also summarised. Finally, based on the information presented here, further MD studies are encouraged.


Assuntos
Aquaporinas , Simulação de Dinâmica Molecular , Água , Animais , Aquaporinas/química , Aquaporinas/metabolismo , Membrana Celular/metabolismo , Humanos , Água/química , Água/metabolismo
4.
Acta Odontol Scand ; 71(3-4): 416-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22625873

RESUMO

OBJECTIVE: To evaluate the mechanisms of microbial interaction between the oral pathogens Candida albicans and Streptococcus mutans. MATERIALS AND METHODS: Growth kinetics for the two micro-organisms, cultured individually or together, were followed experimentally for 36 h. The different growth curves were analysed by means of mathematical modelling. RESULTS: Under the experimental conditions, S. mutans final concentration, when grown individually, was 5-times that of C. albicans. Contrarily, when both micro-organisms grew together, this ratio was inversed and C. albicans final concentration was even higher than that of S. mutans. When both micro-organisms share the niche, a model including linear competition among one another was best suited to reproduce the experimental observations. The results of this model show that the initial growth rates of both species are positively influenced by their mutual interaction. However, at longer incubation times, C. albicans prevents bacterial growth and achieves concentrations 4-times higher than when grown individually. CONCLUSIONS: The results suggest that C. albicans biofilm formation could be potentiated by the presence of S. mutans by two mechanisms: synergically at short times and by competition at longer periods.


Assuntos
Candida albicans/fisiologia , Modelos Teóricos , Streptococcus mutans/fisiologia , Candida albicans/crescimento & desenvolvimento , Streptococcus mutans/genética
5.
Biophys Rev ; 15(4): 497-513, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681084

RESUMO

Cellular systems must deal with mechanical forces to satisfy their physiological functions. In this context, proteins with mechanosensitive properties play a crucial role in sensing and responding to environmental changes. The discovery of aquaporins (AQPs) marked a significant breakthrough in the study of water transport. Their transport capacity and regulation features make them key players in cellular processes. To date, few AQPs have been reported to be mechanosensitive. Like mechanosensitive ion channels, AQPs respond to tension changes in the same range. However, unlike ion channels, the aquaporin's transport rate decreases as tension increases, and the molecular features of the mechanism are unknown. Nevertheless, some clues from mechanosensitive ion channels shed light on the AQP-membrane interaction. The GxxxG motif may play a critical role in the water permeation process associated with structural features in AQPs. Consequently, a possible gating mechanism triggered by membrane tension changes would involve a conformational change in the cytoplasmic extreme of the single file region of the water pathway, where glycine and histidine residues from loop B play a key role. In view of their transport capacity and their involvement in relevant processes related to mechanical forces, mechanosensitive AQPs are a fundamental piece of the puzzle for understanding cellular responses.

6.
Adv Physiol Educ ; 36(4): 345-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23209017

RESUMO

When new members join a working group dedicated to scientific research, several changes occur in the group's dynamics. From a teaching point of view, a subsequent challenge is to develop innovative strategies to train new staff members in creative thinking, which is the most complex and abstract skill in the cognitive domain according to Bloom's revised taxonomy. In this sense, current technological and digital advances offer new possibilities in the field of education. Computer simulation and biological experiments can be used together as a combined tool for teaching and learning sometimes complex physiological and biophysical concepts. Moreover, creativity can be thought of as a social process that relies on interactions among staff members. In this regard, the acquisition of cognitive abilities coexists with the attainment of other skills from psychomotor and affective domains. Such dynamism in teaching and learning stimulates teamwork and encourages the integration of members of the working group. A practical example, based on the teaching of biophysical subjects such as osmosis, solute transport, and membrane permeability, which are crucial in understanding the physiological concept of homeostasis, is presented.


Assuntos
Simulação por Computador , Laboratórios , Osmose/fisiologia , Fisiologia/educação , Estudantes de Medicina , Ensino/métodos , Animais , Feminino , Humanos , Fisiologia/métodos , Xenopus laevis
7.
Cell Physiol Biochem ; 28(2): 259-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21865733

RESUMO

Shroom is a family of related proteins linked to the actin cytoskeleton. xShroom1 is constitutively expressed in X. oocytes and is required for the expression of amiloride sensitive sodium channels (ENaC). Oocytes were injected with α, ß, and γ mENaC and xShroom1 sense or antisense oligonucleotides. We used voltage clamp techniques to study the amiloride-sensitive Na(+) currents (INa((amil))). We observed a marked reduction in INa((amil)) in oocytes co-injected with xShroom1 antisense. Oocytes expressing a DEG mutant ß-mENaC subunit (ß-S518K) with an open probability of 1 had enhanced INa((amil)) although these currents were also reduced when co-injected with xShroom1 antisense. Addition of low concentration (20 ng/ml) of trypsin which activates the membrane-resident ENaC channels led to a slow increase in INa((amil)) in oocytes with xShroom1 sense but had no effect on the currents in oocytes coinjected with ENaC and xShroom1 antisense. The same results were obtained with higher concentrations of trypsin (2 µg/ml) exposed during 2.5 min. In addition, fluorescence positive staining of plasma membrane in the oocytes expressing α, ß and γ mENaC and xShroom1 sense were observed but not in oocytes coinjected with ENaC and xShroom1 antisense oligonucleotides. On this basis, we suggest that xShroom1-dependent ENaC inhibition may be through the number of channels inserted in the membrane.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Canais de Sódio/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Canais Epiteliais de Sódio/genética , Feminino , Mutação , Oligonucleotídeos Antissenso/metabolismo , Oócitos/metabolismo , Oócitos/patologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Sódio/genética , Tripsina/farmacologia , Proteínas de Xenopus/genética
8.
Cell Physiol Biochem ; 28(4): 733-42, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22178885

RESUMO

Uroguanylin (UGN) has been proposed as a key regulator of salt and water intestinal transport. Uroguanylin activates cell-surface guanylate cyclase C receptor (GC-C) and modulates cellular function via cyclic GMP (cGMP), thus increasing electrolyte and net water secretion. It has been suggested that the action of UGN could involve the Na(+)/H(+) exchanger, but the actual contribution of this transporter still remains unclear. The objective of our study was to investigate the putative effects of UGN on some members of the Na(+)/H(+) exchanger family (NHEs), as well as to clarify its consequences on transepithelial fluid flow in T84 cells. In order to do so, transepithelial fluid flow (J(v)) was studied by optic techniques and intracellular pH (pH(i)) was measured with a fluorescence method. Results showed that NHE2 is found at the apical membrane and has a major role in Na(+) absorption; NHE1 and NHE4 are localized at the basolateral membrane with a house-keeping role in steady state pH(i). In the assayed conditions, cell exposure to apical UGN increases net secretory J(v), without changing short-circuit currents nor transepithelial resistance, and reduces NHE2 activity. Therefore, at physiological pH, the effect on net J(v) was produced mainly by a reduction in normal Na(+) absorption through NHE2, rather than by the stimulation of electrolyte secretion. Our study shows that the effect of UGN on pH(i) is GC-C/cGMP-mediated and enhanced by sildenafil, thus involving PDE5 enzyme. Additionally, cell exposure to apical UGN results in intracellular alkalinization, probably due to indirect effects on basolateral NHE1 and NHE4, which have a major role in pH(i) regulation.


Assuntos
Peptídeos Natriuréticos/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Intestinos/citologia , Intestinos/enzimologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética
9.
Eur Biophys J ; 40(6): 737-46, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21373963

RESUMO

This work studies water permeability properties of human aquaporin 1 (hAQP1) expressed in Xenopus laevis oocyte membranes, applying a technique where cellular content is replaced with a known medium, with the possibility of measuring intracellular pressure. Consequences on water transport-produced by well-known anisotonic gradients and by the intracellular effect of probable aquaporin inhibitors-were tested. In this way, the specific intracellular inhibition of hAQP1 by the diuretic drug furosemide was demonstrated. In addition, experiments imposing anisotonic mannitol gradients with a constant ionic strength showed that the relationship between water flux and the applied mannitol gradient deflects from a perfect osmometer response when the gradient is higher than 150 mosmol kg (W) (-1) . These results would indicate that the passage of water molecules through hAQP1 may have a maximum rate. As a whole, this work demonstrates the technical advantage of controlling both intracellular pressure and medium composition in order to study biophysical properties of hAQP1, and contributes information on water channel behavior under osmotic challenges and the discovery of new inhibitors.


Assuntos
Aquaporina 1/antagonistas & inibidores , Furosemida/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Água/metabolismo , Xenopus laevis/metabolismo , Animais , Aquaporina 1/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Osmose/efeitos dos fármacos
10.
Cells ; 7(11)2018 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30423856

RESUMO

Aquaporins (AQPs) function as tetrameric structures in which each monomer has its own permeable pathway. The combination of structural biology, molecular dynamics simulations, and experimental approaches has contributed to improve our knowledge of how protein conformational changes can challenge its transport capacity, rapidly altering the membrane permeability. This review is focused on evidence that highlights the functional relationship between the monomers and the tetramer. In this sense, we address AQP permeation capacity as well as regulatory mechanisms that affect the monomer, the tetramer, or tetramers combined in complex structures. We therefore explore: (i) water permeation and recent evidence on ion permeation, including the permeation pathway controversy-each monomer versus the central pore of the tetramer-and (ii) regulatory mechanisms that cannot be attributed to independent monomers. In particular, we discuss channel gating and AQPs that sense membrane tension. For the latter we propose a possible mechanism that includes the monomer (slight changes of pore shape, the number of possible H-bonds between water molecules and pore-lining residues) and the tetramer (interactions among monomers and a positive cooperative effect).

11.
J Neurosci Methods ; 161(2): 301-5, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17178424

RESUMO

Water channels (aquaporins) family members have been identified in central nervous system cells. A classic method to measure membrane water permeability and its regulation is to capture and analyse images of Xenopus laevis oocytes expressing them. Laboratories dedicated to the analysis of motion images usually have powerful equipment valued in thousands of dollars. However, some scientists consider that new approaches are needed to reduce costs in scientific labs, especially in developing countries. The objective of this work is to share a very low-cost hardware and software setup based on a well-selected webcam, a hand-made adapter to a microscope and the use of free software to measure membrane water permeability in Xenopus oocytes. One of the main purposes of this setup is to maintain a high level of quality in images obtained at brief intervals (shorter than 70 ms). The presented setup helps to economize without sacrificing image analysis requirements.


Assuntos
Aquaporinas/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Interpretação de Imagem Assistida por Computador/instrumentação , Microscopia/instrumentação , Oócitos/citologia , Oócitos/fisiologia , Software , Animais , Aquaporinas/genética , Argentina , Tamanho Celular , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/economia , Microscopia/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Equilíbrio Hidroeletrolítico/fisiologia , Xenopus laevis
12.
Biophys Rev ; 9(5): 545-562, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28871493

RESUMO

Aquaporins (AQPs) can be revisited from a distinct and complementary perspective: the outcome from analyzing them from both plant and animal studies. (1) The approach in the study. Diversity found in both kingdoms contrasts with the limited number of crystal structures determined within each group. While the structure of almost half of mammal AQPs was resolved, only a few were resolved in plants. Strikingly, the animal structures resolved are mainly derived from the AQP2-lineage, due to their important roles in water homeostasis regulation in humans. The difference could be attributed to the approach: relevance in animal research is emphasized on pathology and in consequence drug screening that can lead to potential inhibitors, enhancers and/or regulators. By contrast, studies on plants have been mainly focused on the physiological role that AQPs play in growth, development and stress tolerance. (2) The transport capacity. Besides the well-described AQPs with high water transport capacity, large amount of evidence confirms that certain plant AQPs can carry a large list of small solutes. So far, animal AQP list is more restricted. In both kingdoms, there is a great amount of evidence on gas transport, although there is still an unsolved controversy around gas translocation as well as the role of the central pore of the tetramer. (3) More roles than expected. We found it remarkable that the view of AQPs as specific channels has evolved first toward simple transporters to molecules that can experience conformational changes triggered by biochemical and/or mechanical signals, turning them also into signaling components and/or behave as osmosensor molecules.

13.
FEBS Lett ; 591(11): 1555-1565, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28486763

RESUMO

Previous works proposed that aquaporins behave as mechanosensitive channels. However, principal issues about mechanosensitivity of aquaporins are not known. In this work, we characterized the mechanosensitive properties of the water channels BvTIP1;2 (TIP1) and BvPIP2;1 (PIP2) from red beet (Beta vulgaris). We simultaneously measured the mechanical behavior and the water transport rates during the osmotic response of emptied-out oocytes expressing TIP1 or PIP2. Our results indicate that TIP1 is a mechanosensitive aquaporin, whereas PIP2 is not. We found that a single exponential function between the osmotic permeability coefficient and the volumetric elastic modulus governs the mechanosensitivity of TIP1. Finally, homology modeling analysis indicates that putative residues involved in mechanosensitivity show different quantity and distribution in TIP1 and PIP2.


Assuntos
Aquaporinas/metabolismo , Beta vulgaris/metabolismo , Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Beta vulgaris/genética , Beta vulgaris/fisiologia , Osmose/fisiologia , Proteínas de Plantas/genética
14.
Front Plant Sci ; 7: 1388, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695468

RESUMO

Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf ) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf . We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf /Ps ), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements, which very likely involve considerable cell volume changes within seconds to hours.

15.
J Biochem Biophys Methods ; 63(3): 187-200, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15967506

RESUMO

Membrane water permeability is habitually calculated from volume changes in Xenopus laevis oocytes during external osmotic challenges. Nevertheless, this approach is limited by the uncertainty on the oocyte internal composition. To circumvent this limitation a new experimental set up is introduced where the cell membrane of an emptied-out oocyte was mounted as a diaphragm between two chambers. In its final configuration the oocyte membrane was part of a closed compartment and net water movements induced swelling or shrinking of it. Volume changes were followed by video-microscopy and digitally recorded. In this manner, water movements could be continuously monitored while controlling chemical composition and hydrostatic pressure on both sides of the membrane. Using this novel experimental approach an increasing hydrostatic pressure gradient was applied to both mature (stage VI) and immature (stage IV) oocytes. The relative maximal volume change tolerated before disruption was similar in both cases (1.26+/-0.07 and 1.27+/-0.03 respectively) and similar to those previously reported under maximal osmotic stress. Nevertheless the osmotic permeability coefficient (P(OSM)) in mature oocytes ((1.72+/-0.58) x 10(-3) cm s(-1); n=6) was significantly lower than in immature oocytes ((5.18+/-0.59) x 10(-3) cm s(-1), n=5; p<0.005).


Assuntos
Biofísica/métodos , Oócitos/metabolismo , Animais , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Feminino , Processamento de Imagem Assistida por Computador , Microscopia de Vídeo , Osmose , Perfusão , Permeabilidade , Pressão , Fatores de Tempo , Água/química , Água/metabolismo , Xenopus laevis
16.
J Biol Phys ; 33(5-6): 331-43, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19669522

RESUMO

This review focuses on studies of water movement across biological membranes performed over the last 50 years. Different scientific approaches had tried to elucidate such intriguing mechanism, from hypotheses emphasizing the role of the lipid bilayer to the cloning of aquaporins, the ubiquitous proteins described as specific water channels. Pioneering and clarifying biophysical work are reviewed beside results obtained with the help of recent sophisticated techniques, to conclude that great advances in the subject live together with old questions without definitive answers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA