Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Neuropsychopharmacol ; 20(4): 336-345, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927737

RESUMO

Background: Dendritic arbor simplification and dendritic spine loss in the hippocampus, a limbic structure implicated in mood disorders, are assumed to contribute to symptoms of depression. These morphological changes imply modifications in dendritic cytoskeleton. Rho GTPases are regulators of actin dynamics through their effector Rho kinase. We have reported that chronic stress promotes depressive-like behaviors in rats along with dendritic spine loss in apical dendrites of hippocampal pyramidal neurons, changes associated with Rho kinase activation. The present study proposes that the Rho kinase inhibitor Fasudil may prevent the stress-induced behavior and dendritic spine loss. Methods: Adult male Sprague-Dawley rats were injected with saline or Fasudil (i.p., 10 mg/kg) starting 4 days prior to and maintained during the restraint stress procedure (2.5 h/d for 14 days). Nonstressed control animals were injected with saline or Fasudil for 18 days. At 24 hours after treatment, forced swimming test, Golgi-staining, and immuno-western blot were performed. Results: Fasudil prevented stress-induced immobility observed in the forced swimming test. On the other hand, Fasudil-treated control animals showed behavioral patterns similar to those of saline-treated controls. Furthermore, we observed that stress induced an increase in the phosphorylation of MYPT1 in the hippocampus, an exclusive target of Rho kinase. This change was accompanied by dendritic spine loss of apical dendrites of pyramidal hippocampal neurons. Interestingly, increased pMYPT1 levels and spine loss were both prevented by Fasudil administration. Conclusion: Our findings suggest that Fasudil may prevent the development of abnormal behavior and spine loss induced by chronic stress by blocking Rho kinase activity.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Dendritos/efeitos dos fármacos , Depressão/patologia , Depressão/prevenção & controle , Hipocampo/patologia , Células Piramidais/ultraestrutura , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Fatores de Despolimerização de Actina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Dendritos/ultraestrutura , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Quinases Lim/metabolismo , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Fosfatase 1/metabolismo , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Restrição Física/efeitos adversos , Natação/psicologia
2.
ACS Chem Neurosci ; 9(5): 945-956, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29361213

RESUMO

A single stress exposure facilitates memory formation through neuroplastic processes that reshape excitatory synapses in the hippocampus, probably requiring changes in extracellular matrix components. We tested the hypothesis that matrix metalloproteinase 9 (MMP-9), an enzyme that degrades components of extracellular matrix and synaptic proteins such as ß-dystroglycan (ß-DG43), changes their activity and distribution in rat hippocampus during the acute stress response. After 2.5 h of restraint stress, we found (i) increased MMP-9 levels and potential activity in whole hippocampal extracts, accompanied by ß-DG43 cleavage, and (ii) a significant enhancement of MMP-9 immunoreactivity in dendritic fields such as stratum radiatum and the molecular layer of hippocampus. After 24 h of stress, we found that (i) MMP-9 net activity rises at somatic field, i.e., stratum pyramidale and granule cell layers, and also at synaptic field, mainly stratum radiatum and the molecular layer of hippocampus, and (ii) hippocampal synaptoneurosome fractions are enriched with MMP-9, without variation of its potential enzymatic activity, in accordance with the constant level of cleaved ß-DG43. These findings indicate that stress triggers a peculiar timing response in the MMP-9 levels, net activity, and subcellular distribution in the hippocampus, suggesting its involvement in the processing of substrates during the stress response.


Assuntos
Hipocampo/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Potenciais de Ação/fisiologia , Animais , Dendritos/metabolismo , Masculino , Neurônios/metabolismo , Ratos Sprague-Dawley , Estresse Fisiológico/fisiologia , Fatores de Tempo
3.
Front Mol Neurosci ; 11: 283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174589

RESUMO

Several studies have shown that a single exposure to stress may improve or impair learning and memory processes, depending on the timing in which the stress event occurs with relation to the acquisition phase. However, to date there is no information about the molecular changes that occur at the synapse during the stress-induced memory modification and after a recovery period. In particular, there are no studies that have evaluated-at the same time-the temporality of stress and stress recovery period in hippocampal short-term memory and the effects on dendritic spine morphology, along with variations in N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits. The aim of our study was to take a multidimensional approach to investigate concomitant behavioral, morphological and molecular changes induced by a single restraint stress exposure (2.5 h) and a recovery period of 6 and 24 h in rats. We found that acute stress elicited a reduced preference to explore an object placed in a novel position (a hippocampal-dependent task). These changes were accompanied by increased activity of LIM kinase I (LIMK; an actin-remodeling protein) and increased levels of NR2A subunits of NMDA receptors. After 6 h of recovery from stress, rats showed similar preference to explore an object placed in a novel or familiar position, but density of immature spines increased in secondary CA1 apical dendrites, along with a transient rise in GluA2 AMPA receptor subunits. After 24 h of recovery from stress, the animals showed a preference to explore an object placed in a novel position, which was accompanied by a normalization of NMDA and AMPA receptor subunits to control values. Our data suggest that acute stress produces reversible molecular and behavioral changes 24 h after stress, allowing a full reestablishment of hippocampal-related memory. Further studies need to be conducted to deepen our understanding of these changes and their reciprocal interactions.Adaptive stress responses are a promising avenue to develop interventions aiming at restoring hippocampal function impaired by repetitive stress exposure.

4.
Front Mol Neurosci ; 11: 251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127715

RESUMO

Studies conducted in rodents subjected to chronic stress and some observations in humans after psychosocial stress, have allowed to establish a link between stress and the susceptibility to many complex diseases, including mood disorders. The studies in rodents have revealed that chronic exposure to stress negatively affects synaptic plasticity by triggering changes in the production of trophic factors, subunit levels of glutamate ionotropic receptors, neuron morphology, and neurogenesis in the adult hippocampus. These modifications may account for the impairment in learning and memory processes observed in chronically stressed animals. It is plausible then, that stress modifies the interplay between signal transduction cascades and gene expression regulation in the hippocampus, therefore leading to altered neuroplasticity and functioning of neural circuits. Considering that miRNAs play an important role in post-transcriptional-regulation of gene expression and participate in several hippocampus-dependent functions; we evaluated the consequences of chronic stress on the expression of miRNAs in dorsal (anterior) portion of the hippocampus, which participates in memory formation in rodents. Here, we show that male rats exposed to daily restraint stress (2.5 h/day) during 7 and 14 days display a differential profile of miRNA levels in dorsal hippocampus and remarkably, we found that some of these miRNAs belong to the miR-379-410 cluster. We confirmed a rise in miR-92a and miR-485 levels after 14 days of stress by qPCR, an effect that was not mimicked by chronic administration of corticosterone (14 days). Our in silico study identified the top-10 biological functions influenced by miR-92a, nine of which were shared with miR-485: Nervous system development and function, Tissue development, Behavior, Embryonic development, Organ development, Organismal development, Organismal survival, Tissue morphology, and Organ morphology. Furthermore, our in silico study provided a landscape of potential miRNA-92a and miR-485 targets, along with relevant canonical pathways related to axonal guidance signaling and cAMP signaling, which may influence the functioning of several neuroplastic substrates in dorsal hippocampus. Additionally, the combined effect of miR-92a and miR-485 on transcription factors, along with histone-modifying enzymes, may have a functional relevance by producing changes in gene regulatory networks that modify the neuroplastic capacity of the adult dorsal hippocampus under stress.

5.
Front Mol Neurosci ; 10: 244, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848384

RESUMO

Previous studies in rats have demonstrated that chronic restraint stress triggers anhedonia, depressive-like behaviors, anxiety and a reduction in dendritic spine density in hippocampal neurons. In this study, we compared the effect of repeated stress on the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits in dorsal and ventral hippocampus (VH). Adult male Sprague-Dawley rats were randomly divided into control and stressed groups, and were daily restrained in their motion (2.5 h/day) during 14 days. We found that chronic stress promotes an increase in c-Fos mRNA levels in both hippocampal areas, although it was observed a reduction in the immunoreactivity at pyramidal cell layer. Furthermore, Arc mRNAs levels were increased in both dorsal and VH, accompanied by an increase in Arc immunoreactivity in dendritic hippocampal layers. Furthermore, stress triggered a reduction in PSD-95 and NR1 protein levels in whole extract of dorsal and VH. Moreover, a reduction in NR2A/NR2B ratio was observed only in dorsal pole. In synaptosomal fractions, we detected a rise in NR1 in dorsal hippocampus (DH). By indirect immunofluorescence we found that NR1 subunits rise, especially in neuropil areas of dorsal, but not VH. In relation to AMPA receptor (AMPAR) subunits, chronic stress did not trigger any change, either in dorsal or ventral hippocampal areas. These data suggest that DH is more sensitive than VH to chronic stress exposure, mainly altering the expression of NMDA receptor (NMDAR) subunits, and probably favors changes in the configuration of this receptor that may influence the function of this area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA