Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8020): 360-368, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926570

RESUMO

A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.


Assuntos
Conectoma , Drosophila melanogaster , Neurônios Motores , Sinapses , Animais , Feminino , Drosophila melanogaster/fisiologia , Neurônios Motores/fisiologia , Asas de Animais/fisiologia , Músculos/fisiologia , Microscopia Eletrônica , Extremidades/fisiologia , Extremidades/inervação , Atlas como Assunto
2.
Proc Natl Acad Sci U S A ; 117(52): 33649-33659, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376224

RESUMO

Axonal conduction velocity, which ensures efficient function of the brain network, is related to axon diameter. Noninvasive, in vivo axon diameter estimates can be made with diffusion magnetic resonance imaging, but the technique requires three-dimensional (3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-holotomography images of white matter samples from the corpus callosum of a monkey brain reveal that blood vessels, cells, and vacuoles affect axonal diameter and trajectory. Within single axons, we find that the variation in diameter and conduction velocity correlates with the mean diameter, contesting the value of precise diameter determination in larger axons. These complex 3D axon morphologies drive previously reported 2D trends in axon diameter and g-ratio. Furthermore, we find that these morphologies bias the estimates of axon diameter with diffusion magnetic resonance imaging and, ultimately, impact the investigation and formulation of the axon structure-function relationship.


Assuntos
Axônios/fisiologia , Animais , Feminino , Haplorrinos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Bainha de Mielina/metabolismo , Relação Estrutura-Atividade , Vacúolos/metabolismo , Substância Branca/anatomia & histologia
3.
Eur J Nucl Med Mol Imaging ; 49(13): 4338-4357, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35852558

RESUMO

PURPOSE: Modern neuroimaging lacks the tools necessary for whole-brain, anatomically dense neuronal damage screening. An ideal approach would include unbiased histopathologic identification of aging and neurodegenerative disease. METHODS: We report the postmortem application of multiscale X-ray phase-contrast computed tomography (X-PCI-CT) for the label-free and dissection-free organ-level to intracellular-level 3D visualization of distinct single neurons and glia. In deep neuronal populations in the brain of aged wild-type and of 3xTgAD mice (a triply-transgenic model of Alzheimer's disease), we quantified intracellular hyperdensity, a manifestation of aging or neurodegeneration. RESULTS: In 3xTgAD mice, the observed hyperdensity was identified as amyloid-ß and hyper-phosphorylated tau protein deposits with calcium and iron involvement, by correlating the X-PCI-CT data to immunohistochemistry, X-ray fluorescence microscopy, high-field MRI, and TEM. As a proof-of-concept, X-PCI-CT was used to analyze hippocampal and cortical brain regions of 3xTgAD mice treated with LY379268, selective agonist of group II metabotropic glutamate receptors (mGlu2/3 receptors). Chronic pharmacologic activation of mGlu2/3 receptors significantly reduced the hyperdensity particle load in the ventral cortical regions of 3xTgAD mice, suggesting a neuroprotective effect with locoregional efficacy. CONCLUSIONS: This multiscale micro-to-nano 3D imaging method based on X-PCI-CT enabled identification and quantification of cellular and sub-cellular aging and neurodegeneration in deep neuronal and glial cell populations in a transgenic model of Alzheimer's disease. This approach quantified the localized and intracellular neuroprotective effects of pharmacological activation of mGlu2/3 receptors.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Cálcio , Senescência Celular , Ferro , Camundongos Transgênicos , Neuroimagem , Fármacos Neuroprotetores/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas tau/metabolismo , Raios X
4.
Proc Natl Acad Sci U S A ; 116(30): 14893-14898, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285331

RESUMO

Fibrous particles interact with cells and organisms in complex ways that can lead to cellular dysfunction, cell death, inflammation, and disease. The development of conductive transparent networks (CTNs) composed of metallic silver nanowires (AgNWs) for flexible touchscreen displays raises new possibilities for the intimate contact between novel fibers and human skin. Here, we report that a material property, nanowire-bending stiffness that is a function of diameter, controls the cytotoxicity of AgNWs to nonimmune cells from humans, mice, and fish without deterioration of critical CTN performance parameters: electrical conductivity and optical transparency. Both 30- and 90-nm-diameter AgNWs are readily internalized by cells, but thinner NWs are mechanically crumpled by the forces imposed during or after endocytosis, while thicker nanowires puncture the enclosing membrane and release silver ions and lysosomal contents to the cytoplasm, thereby initiating oxidative stress. This finding extends the fiber pathology paradigm and will enable the manufacture of safer products incorporating AgNWs.


Assuntos
Endossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Lisossomos/metabolismo , Nanofios/toxicidade , Animais , Linhagem Celular , Células Cultivadas , Condutividade Elétrica , Fibroblastos/metabolismo , Peixes , Humanos , Camundongos , Nanofios/química , Estresse Oxidativo , Prata/química
5.
J Biomed Sci ; 28(1): 42, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098949

RESUMO

BACKGROUND: The evolution of cartilage degeneration is still not fully understood, partly due to its thinness, low radio-opacity and therefore lack of adequately resolving imaging techniques. X-ray phase-contrast imaging (X-PCI) offers increased sensitivity with respect to standard radiography and CT allowing an enhanced visibility of adjoining, low density structures with an almost histological image resolution. This study examined the feasibility of X-PCI for high-resolution (sub-) micrometer analysis of different stages in tissue degeneration of human cartilage samples and compare it to histology and transmission electron microscopy. METHODS: Ten 10%-formalin preserved healthy and moderately degenerated osteochondral samples, post-mortem extracted from human knee joints, were examined using four different X-PCI tomographic set-ups using synchrotron radiation the European Synchrotron Radiation Facility (France) and the Swiss Light Source (Switzerland). Volumetric datasets were acquired with voxel sizes between 0.7 × 0.7 × 0.7 and 0.1 × 0.1 × 0.1 µm3. Data were reconstructed by a filtered back-projection algorithm, post-processed by ImageJ, the WEKA machine learning pixel classification tool and VGStudio max. For correlation, osteochondral samples were processed for histology and transmission electron microscopy. RESULTS: X-PCI provides a three-dimensional visualization of healthy and moderately degenerated cartilage samples down to a (sub-)cellular level with good correlation to histologic and transmission electron microscopy images. X-PCI is able to resolve the three layers and the architectural organization of cartilage including changes in chondrocyte cell morphology, chondrocyte subgroup distribution and (re-)organization as well as its subtle matrix structures. CONCLUSIONS: X-PCI captures comprehensive cartilage tissue transformation in its environment and might serve as a tissue-preserving, staining-free and volumetric virtual histology tool for examining and chronicling cartilage behavior in basic research/laboratory experiments of cartilage disease evolution.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Microscopia de Contraste de Fase/métodos , Osteoartrite/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/patologia , Feminino , Humanos , Masculino , Osteoartrite/etiologia , Osteoartrite/patologia
6.
J Microsc ; 282(1): 30-44, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33125757

RESUMO

There is a growing interest in developing 3D microscopy for the exploration of thick biological tissues. Recently, 3D X-ray nanocomputerised tomography has proven to be a suitable technique for imaging the bone lacunocanalicular network. This interconnected structure is hosting the osteocytes which play a major role in maintaining bone quality through remodelling processes. 3D images have the potential to reveal the architecture of cellular networks, but their quantitative analysis remains a challenge due to the density and complexity of nanometre sized structures and the need to handle and process large datasets, for example, 20483 voxels corresponding to 32 GB per individual image in our case. In this work, we propose an efficient image processing approach for the segmentation of the network and the extraction of characteristic parameters describing the 3D structure. These parameters include the density of lacunae, the porosity of lacunae and canaliculi, and morphological features of lacunae (volume, surface area, lengths, anisotropy etc.). We also introduce additional parameters describing the local environment of each lacuna and its canaliculi. The method is applied to analyse eight human femoral cortical bone samples imaged by magnified X-ray phase nanotomography with a voxel size of 120 nm, which was found to be a good compromise to resolve canaliculi while keeping a sufficiently large field of view of 246 µm in 3D. The analysis was performed on a total of 2077 lacunae showing an average length, width and depth of 17.1 µm × 9.2 µm × 4.4 µm, with an average number of 58.2 canaliculi per lacuna and a total lacuno-canalicular porosity of 1.12%. The reported descriptive parameters provide information on the 3D organisation of the lacuno-canalicular network in human bones.


Assuntos
Osso e Ossos , Osteócitos , Osso e Ossos/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Raios X
7.
J Struct Biol ; 209(1): 107432, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816415

RESUMO

High-resolution three-dimensional imaging is key to our understanding of biological tissue formation and function. Recent developments in synchrotron-based X-Ray tomography techniques provide unprecedented morphological information on relatively large sample volumes with a spatial resolution better than 50 nm. However, the analysis of the generated data, in particular image segmentation - separation into structure and background - still presents a significant challenge, especially when considering complex biomineralized structures that exhibit hierarchical arrangement of their constituents across many length scales - from millimeters down to nanometers. In the present work, synchrotron-based holographic nano-tomography data are combined with state-of-the-art machine learning methods to image and analyze the nacreous architecture in the bivalve Unio pictorum in 3D. Using kinetic and thermodynamic considerations known from physics of materials, the obtained spatial information is then used to provide a quantitative description of the structural and topological evolution of nacre during shell formation. Ultimately, this study establishes a workflow for high-resolution three-dimensional analysis of fine highly-mineralized biological tissues while providing a detailed analytical view on nacre morphogenesis.


Assuntos
Exoesqueleto/ultraestrutura , Imageamento Tridimensional , Morfogênese/genética , Exoesqueleto/crescimento & desenvolvimento , Animais , Biomineralização , Aprendizado Profundo , Cinética , Minerais/química , Síncrotrons , Termodinâmica , Tomografia por Raios X , Raios X
8.
Anal Chem ; 92(7): 4814-4819, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32162903

RESUMO

X-ray microscopy is increasingly used in biology, but in most cases only in a qualitative way. We present here a 3D correlative cryo X-ray microscopy approach suited for the quantification of molar concentrations and structure in native samples at nanometer scale. The multimodal approach combines X-ray fluorescence and X-ray holographic nanotomography on "thick" frozen-hydrated cells. The quantitativeness of the X-ray fluorescence reconstruction is improved by estimating the self-attenuation from the 3D holography reconstruction. Applied to complex macrophage cells, we extract the quantification of major and minor elements heavier than phosphorus, as well as the density, in the different organelles. The intracellular landscape shows remarkable elemental differences. This novel analytical microscopy approach will be of particular interest to investigate complex biological and chemical systems in their native environment.


Assuntos
Macrófagos/química , Nanopartículas/análise , Imagem Óptica , Análise de Célula Única , Microscopia Crioeletrônica , Humanos , Macrófagos/citologia , Tamanho da Partícula , Propriedades de Superfície
9.
Neuroimage ; 184: 490-495, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240904

RESUMO

Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder associated with aberrant production of beta-amyloid (Aß) peptide depositing in brain as amyloid plaques. While animal models allow investigation of disease progression and therapeutic efficacy, technology to fully dissect the pathological mechanisms of this complex disease at cellular and vascular levels is lacking. X-ray phase contrast tomography (XPCT) is an advanced non-destructive 3D multi-scale direct imaging from the cell through to the whole brain, with exceptional spatial and contrast resolution. We exploit XPCT to simultaneously analyse disease-relevant vascular and neuronal networks in AD mouse brain, without sectioning and staining. The findings clearly show the different typologies and internal structures of Aß plaques, together with their interaction with patho/physiological cellular and neuro-vascular microenvironment. XPCT enables for the first time a detailed visualization of amyloid-angiopathy at capillary level, which is impossible to achieve with other approaches. XPCT emerges as added-value technology to explore AD mouse brain as a whole, preserving tissue chemistry and structure, enabling the comparison of physiological vs. pathological states at the level of crucial disease targets. In-vivo translation will permit to monitor emerging therapeutic approaches and possibly shed new light on pathological mechanisms of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Imageamento Tridimensional/métodos , Neuroimagem/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos
10.
J Synchrotron Radiat ; 26(Pt 5): 1751-1762, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490167

RESUMO

X-ray ptychography is a coherent diffraction imaging technique with a high resolving power and excellent quantitative capabilities. Although very popular in synchrotron facilities nowadays, its implementation with X-ray energies above 15 keV is very rare due to the challenges imposed by the high energies. Here, the implementation of high-energy X-ray ptychography at 17 and 33.6 keV is demonstrated and solutions to overcome the important challenges are provided. Among the particular aspects addressed are the use of an efficient high-energy detector, a long synchrotron beamline for the high degree of spatial coherence, a beam with 1% monochromaticity providing high flux, and efficient multilayer coated Kirkpatrick-Baez X-ray optics to shape the beam. The constraints imposed by the large energy bandwidth are carefully analyzed, as well as the requirements to sample correctly the high-energy diffraction patterns with small speckle size. In this context, optimized scanning trajectories allow the total acquisition time to be reduced by up to 35%. The paper explores these innovative solutions at the ID16A nano-imaging beamline by ptychographic imaging of a 200 nm-thick gold lithography sample.


Assuntos
Óptica e Fotônica/instrumentação , Intensificação de Imagem Radiográfica/instrumentação , Síncrotrons , Desenho de Equipamento , Ouro/química , Modelos Teóricos , Difração de Raios X , Raios X
11.
Calcif Tissue Int ; 105(3): 308-315, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31147741

RESUMO

The roles of osteocytes in bone homeostasis have garnered increasing attention since it has been realized that osteocytes communicate with other organs. It has long been debated whether and/or to which degree osteocytes can break down the bone matrix surrounding them in a process called osteocytic osteolysis. Osteocytic osteolysis has been indicated to be induced by a number of skeletal challenges including lactation in CD1 and C57BL/6 mice, whereas immobilization-induced osteocytic osteolysis is still a matter of controversy. Motivated by the wish to understand this process better, we studied osteocyte lacunae in lactating NMRI mice, which is a widely used outbred mouse strain. Surprisingly, no trace of osteocytic osteolysis could be detected in tibial or femoral cortical bone either by 3D investigation by synchrotron nanotomography, by studies of lacunar cross-sectional areas using scanning electron microscopy, or by light microscopy. These results lead us to conclude that osteocytic osteolysis does not occur in NMRI mice as a response to lactation, in turn suggesting that osteocytic osteolysis may not play a generic role in mobilizing calcium during lactation.


Assuntos
Densidade Óssea/fisiologia , Osso Cortical/citologia , Lactação/fisiologia , Osteócitos/citologia , Osteócitos/fisiologia , Osteólise/patologia , Animais , Osso Cortical/diagnóstico por imagem , Osso Cortical/ultraestrutura , Feminino , Camundongos , Osteócitos/ultraestrutura , Tíbia/diagnóstico por imagem , Tíbia/ultraestrutura
12.
Angew Chem Int Ed Engl ; 58(11): 3461-3465, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30663197

RESUMO

A series of tamoxifen-like metallocifens of the group-8 metals (Fe, Ru, and Os) has strong antiproliferative activity on the triple-negative breast cancer cells (MDA-MB-231). To shed light on the mechanism of action of these molecules, synchrotron radiation X-ray fluorescence nanoimaging studies were performed on cells exposed to osmocenyl-tamoxifen (Oc-OH-Tam) to disclose its intracellular distribution. High-resolution mapping of the lipophilic Oc-OH-Tam in cells revealed its preferential accumulation in the endomembrane system. This is consistent with the ability of the amino nitrogen chain of the compounds to be protonated at physiological pH and responsible for electrostatic interactions between Oc-OH-Tam and membranes. A comprehensive scenario is proposed that provides new insight into the cellular behavior and activation of Oc-OH-Tam and advances the understanding of its mechanism of action.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Compostos Organometálicos/química , Tamoxifeno/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Complexos de Coordenação/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Ferro/química , Ligantes , Imagem Molecular/métodos , Sondas Moleculares/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Osmio/química , Radiografia , Rutênio/química , Eletricidade Estática , Síncrotrons , Raios X
13.
Opt Express ; 26(25): 32847-32865, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645446

RESUMO

In propagation based phase contrast imaging, intensity patterns are recorded on a x-ray detector at one or multiple propagation distances, called in-line holograms. They form the input of an inversion algorithm that aims at retrieving the phase shift induced by the object. The problem of phase retrieval in in-line holography is an ill-posed inverse problem. Consequently an adequate solution requires some form of regularization with the most commonly applied being the classical Tikhonov regularization. While generally satisfying this method suffers from a few issues such as the choice of the regularization parameter. Here, we offer an alternative to the established method by applying the principles of Bayesian inference. We construct an iterative optimization algorithm capable of both retrieving the unknown phase and determining a multi-dimensional regularization parameter. In the end, we highlight the advantages of the introduced algorithm, chief among them being the unsupervised determination of the regularization parameter(s). The proposed approach is tested on both simulated and experimental data and is found to provide robust solutions, with improved response to typical issues like low frequency noise and the twin-image problem.

14.
Opt Express ; 26(9): 11110-11124, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716036

RESUMO

X-ray phase contrast imaging offers higher sensitivity compared to conventional X-ray attenuation imaging and can be simply implemented by propagation when using a partially coherent synchrotron beam. We address the phase retrieval in in-line phase nano-CT using multiple propagation distances. We derive a method which extends Paganin's single distance method and compare it to the contrast transfer function (CTF) approach in the case of a homogeneous object. The methods are applied to phase nano-CT data acquired at the voxel size of 30 nm (ID16A, ESRF, Grenoble, France). Our results show a gain in image quality in terms of the signal-to-noise ratio and spatial resolution when using four distances instead of one. The extended Paganin's method followed by an iterative refinement step provides the best reconstructions while the homogeneous CTF method delivers quasi comparable results for our data, even without refinement step.


Assuntos
Fêmur/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Osso e Ossos/diagnóstico por imagem , Diáfises , Feminino , Humanos , Pessoa de Meia-Idade , Imagens de Fantasmas , Razão Sinal-Ruído
15.
Anal Chem ; 89(21): 11435-11442, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28994576

RESUMO

Synchrotron radiation phase-contrast computed nanotomography (nano-CT) and two- and three-dimensional (2D and 3D) nanoscopic X-ray fluorescence (nano-XRF) were used to investigate the internal distribution of engineered cobalt nanoparticles (Co NPs) in exposed individuals of the nematode Caenorhabditis elegans. Whole nematodes and selected tissues and organs were 3D-rendered: anatomical 3D renderings with 50 nm voxel size enabled the visualization of spherical nanoparticle aggregates with size up to 200 nm within intact C. elegans. A 20 × 37 nm2 high-brilliance beam was employed to obtain XRF elemental distribution maps of entire nematodes or anatomical details such as embryos, which could be compared with the CT data. These maps showed Co NPs to be predominantly present within the intestine and the epithelium, and they were not colocalized with Zn granules found in the lysosome-containing vesicles or Fe agglomerates in the intestine. Iterated XRF scanning of a specimen at 0° and 90° angles suggested that NP aggregates were translocated into tissues outside of the intestinal lumen. Virtual slicing by means of 2D XRF tomography, combined with holotomography, indicated presumable presence of individual NP aggregates inside the uterus and within embryos.


Assuntos
Caenorhabditis elegans/metabolismo , Cobalto/química , Cobalto/metabolismo , Nanopartículas Metálicas , Nanotecnologia , Imagem Óptica , Tomografia Computadorizada por Raios X , Animais , Engenharia , Imageamento Tridimensional , Raios X
16.
Nat Methods ; 10(9): 857-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852452

RESUMO

Tissue gene expression profiling is performed on homogenates or on populations of isolated single cells to resolve molecular states of different cell types. In both approaches, histological context is lost. We have developed an in situ sequencing method for parallel targeted analysis of short RNA fragments in morphologically preserved cells and tissue. We demonstrate in situ sequencing of point mutations and multiplexed gene expression profiling in human breast cancer tissue sections.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Preservação de Tecido/métodos , Actinas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Mutação Puntual , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , RNA Mensageiro/análise , RNA Mensageiro/genética , Receptor ErbB-2/genética , Proteínas ras/genética
17.
J Microsc ; 255(3): 158-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25040055

RESUMO

The architectural properties of the osteocyte cell network provide a valuable basis for understanding the mechanisms of bone remodelling, mineral homeostasis, ageing and pathologies. Recent advances in synchrotron microtomography enable unprecedented three-dimensional imaging of both the bone lacunar network and the extracellular matrix. Here, we investigate the three-dimensional morphological properties of osteocyte lacunae in human healthy and bisphosphonate-related osteonecrotic jaw bone based on synchrotron X-ray computed tomography images, with a spatial isotropic voxel size of 300 nm. Bisphosphonate-related osteonecrosis of the jaw is a relatively new disease with increasing incidence, which remains poorly understood. A step forward in elucidating this malady is to assess whether, and how, the morphology of the osteocyte lacunar network is modified in the affected jaw tissue. We evaluate thousands of cell lacunae from five specimens of which three originate from patients diagnosed with bisphosphonate-associated osteonecrosis. In this exploratory study, we report three-dimensional quantitative results on lacunar volumes (296-502 µm(3)), shape (approximated by an ellipsoidal shape with principal axes a > b > c, such that a = 2.2b and a = 4c) and spatial distribution (i.e., 50% of the mineralized matrix volume is located within 12 µm to the closest lacunar boundary) at submicron resolution on such specimens. We observe that the average lacunar volumes of the bisphosphonate-related osteonecrotic jaw specimens were within the range of volumes found in the two specimens originating from healthy donors and conclude that lacunar volumes are not the key element in the course of bisphosphonate-related osteonecrotic jaw. In three out of five specimens we observe lacunar volume sizes in segmented osteons to be significantly different compared to lacunar volumes in the adjacent tissue regions. Furthermore, we quantify the number of lacunae containing small dense objects (on average 9%). In contrast to lacunar morphology we report the lacunar density (16,000-50,000 per mm(3)) to be different in jaw bone tissue compared to what has been reported in femoral sites.


Assuntos
Osso e Ossos/citologia , Osso e Ossos/patologia , Arcada Osseodentária/citologia , Arcada Osseodentária/patologia , Osteócitos/citologia , Osteócitos/patologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Imageamento Tridimensional/métodos , Pessoa de Meia-Idade , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Microtomografia por Raio-X/métodos
18.
Curr Osteoporos Rep ; 12(4): 465-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25292366

RESUMO

Micro-computed tomography (micro-CT)-a version of X-ray CT operating at high spatial resolution-has had a considerable success for the investigation of trabecular bone micro-architecture. Currently, there is a lot of interest in exploiting CT techniques at even higher spatial resolutions to assess bone tissue at the cellular scale. After recalling the basic principles of micro-CT, we review the different existing system, based on either standard X-ray tubes or synchrotron sources. Then, we present recent applications of micro- and nano-CT for the analysis of osteocyte lacunae and the lacunar-canalicular network. We also address the question of the quantification of bone ultrastructure to go beyond the sole visualization.


Assuntos
Osso e Ossos/ultraestrutura , Microrradiografia/métodos , Nanotecnologia/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Osso e Ossos/diagnóstico por imagem , Matriz Extracelular/diagnóstico por imagem , Matriz Extracelular/ultraestrutura , Humanos , Modelos Animais , Osteócitos/diagnóstico por imagem , Osteócitos/ultraestrutura , Síncrotrons
19.
Acta Biomater ; 179: 164-179, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513725

RESUMO

Failure-resistant designs are particularly crucial for bones subjected to rapid loading, as is the case for the ambush-hunting northern pike (Esox lucius). These fish have slim and low-density osteocyte-lacking bones. As part of the swallowing mechanism, the cleithrum bone opens and closes the jaw. The cleithrum needs sufficient strength and damage tolerance, to withstand years of repetitive rapid gape-and-suck cycles of feeding. The thin wing-shaped bone comprises anisotropic layers of mineralized collagen fibers that exhibit periodic variations in mineral density on the mm and micrometer length scales. Wavy collagen fibrils interconnect these layers yielding a highly anisotropic structure. Hydrated cleithra exhibit Young's moduli spanning 3-9 GPa where the yield stress of ∼40 MPa increases markedly to exceed ∼180 MPa upon drying. This 5x observation of increased strength corresponds to a change to brittle fracture patterns. It matches the emergence of compressive residual strains of ∼0.15% within the mineral crystals due to forces from shrinking collagen layers. Compressive stresses on the nanoscale, combined with the layered anisotropic microstructure on the mm length scale, jointly confer structural stability in the slender and lightweight bones. By employing a range of X-ray, electron and optical imaging and mechanical characterization techniques, we reveal the structure and properties that make the cleithra impressively damage resistant composites. STATEMENT OF SIGNIFICANCE: By combining structural and mechanical characterization techniques spanning the mm to the sub-nanometer length scales, this work provides insights into the structural organization and properties of a resilient bone found in pike fish. Our observations show how the anosteocytic bone within the pectoral gridle of these fish, lacking any biological (remodeling) repair mechanisms, is adapted to sustain natural repeated loading cycles of abrupt jaw-gaping and swallowing. We find residual strains within the mineral apatite nanocrystals that contribute to forming a remarkably resilient composite material. Such information gleaned from bony structures that are different from the usual bones of mammals showcases how nature incorporates smart features that induce damage tolerance in bone material, an adaptation acquired through natural evolutionary processes.


Assuntos
Esocidae , Animais , Esocidae/fisiologia , Osso e Ossos/fisiologia , Estresse Mecânico , Nanopartículas/química , Força Compressiva , Evolução Biológica , Módulo de Elasticidade , Colágeno/química
20.
ArXiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36911282

RESUMO

Comprehensive, synapse-resolution imaging of the brain will be crucial for understanding neuronal computations and function. In connectomics, this has been the sole purview of volume electron microscopy (EM), which entails an excruciatingly difficult process because it requires cutting tissue into many thin, fragile slices that then need to be imaged, aligned, and reconstructed. Unlike EM, hard X-ray imaging is compatible with thick tissues, eliminating the need for thin sectioning, and delivering fast acquisition, intrinsic alignment, and isotropic resolution. Unfortunately, current state-of-the-art X-ray microscopy provides much lower resolution, to the extent that segmenting membranes is very challenging. We propose an uncertainty-aware 3D reconstruction model that translates X-ray images to EM-like images with enhanced membrane segmentation quality, showing its potential for developing simpler, faster, and more accurate X-ray based connectomics pipelines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA