Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neural Transm (Vienna) ; 127(1): 103-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31858267

RESUMO

Working memory (WM) deficits constitute a core symptom of schizophrenia. Inadequacy of WM maintenance in schizophrenia has been reported to reflect abnormalities in the excitation/inhibition (E/I) balance between pyramidal neurons and parvalbumin basket cells, which may explain alterations of the dynamics of gamma and delta oscillations. To address this issue, we assessed event-related gamma (35-45 Hz) and delta (0.5-4 Hz) oscillatory responses in a visual n-back WM task in patients with first-episode psychosis (FEP) and healthy controls (HC). Periodicity analyses of oscillations were computed to explore the relationship between the psychiatric status and the WM load-related processes reflected by each frequency range. The correspondence between nested delta-gamma oscillations was estimated to assess the strength of the frontal E/I balance. In HC, gamma oscillations were synchronized by the stimulus in a 50-150 ms time range for all tasks, and periodicity of the delta cycle was comparable between the tasks. In addition, synchronization of gamma oscillations in HC occurred at the maximal descending phase of the delta cycle half-period, supporting the coexistence of delta-nested gamma oscillations. Compared with controls, FEP patients showed a lack of gamma synchronization independently of the nature of the task, and the period of delta oscillation increased significantly with the difficulty of the WM task. We thus demonstrated in FEP an inability to encode multiple items in short-term memory associated with abnormalities in the relationship between oscillations related to the difficulty of the WM task. These results argue in favor of a dysfunction of the E/I balance in psychosis.


Assuntos
Ritmo Delta/fisiologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Potenciais Evocados/fisiologia , Ritmo Gama/fisiologia , Memória de Curto Prazo/fisiologia , Transtornos Psicóticos/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
2.
J Synchrotron Radiat ; 26(Pt 5): 1448-1461, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490132

RESUMO

The Karabo distributed control system has been developed to address the challenging requirements of the European X-ray Free Electron Laser facility, including complex and custom-made hardware, high data rates and volumes, and close integration of data analysis for distributed processing and rapid feedback. Karabo is a pluggable, distributed application management system forming a supervisory control and data acquisition environment as part of a distributed control system. Karabo provides integrated control of hardware, monitoring, data acquisition and data analysis on distributed hardware, allowing rapid control feedback based on complex algorithms. Services exist for access control, data logging, configuration management and situational awareness through alarm indicators. The flexible framework enables quick response to the changing requirements in control and analysis, and provides an efficient environment for development, and a single interface to make all changes immediately available to operators and experimentalists.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA