Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 34(5): 524-537, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33166203

RESUMO

The interactions of crops with root-colonizing endophytic microorganisms are highly relevant to agriculture, because endophytes can modify plant resistance to pests and increase crop yields. We investigated the interactions between the host plant Zea mays and the endophytic fungus Trichoderma virens at 5 days postinoculation grown in a hydroponic system. Wild-type T. virens and two knockout mutants, with deletion of the genes tv2og1 or vir4 involved in specialized metabolism, were analyzed. Root colonization by the fungal mutants was lower than that by the wild type. All fungal genotypes suppressed root biomass. Metabolic fingerprinting of roots, mycelia, and fungal culture supernatants was performed using ultrahigh performance liquid chromatography coupled to diode array detection and quadrupole time-of-flight tandem mass spectrometry. The metabolic composition of T. virens-colonized roots differed profoundly from that of noncolonized roots, with the effects depending on the fungal genotype. In particular, the concentrations of several metabolites derived from the shikimate pathway, including an amino acid and several flavonoids, were modulated. The expression levels of some genes coding for enzymes involved in these pathways were affected if roots were colonized by the ∆vir4 genotype of T. virens. Furthermore, mycelia and fungal culture supernatants of the different T. virens genotypes showed distinct metabolomes. Our study highlights the fact that colonization by endophytic T. virens leads to far-reaching metabolic changes, partly related to two fungal genes. Both metabolites produced by the fungus and plant metabolites modulated by the interaction probably contribute to these metabolic patterns. The metabolic changes in plant tissues may be interlinked with systemic endophyte effects often observed in later plant developmental stages.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Hypocrea , Trichoderma , Endófitos , Raízes de Plantas , Zea mays
2.
Front Microbiol ; 10: 2794, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921006

RESUMO

Species of the genus Trichoderma are ubiquitous in the environment and are widely used in agriculture, as biopesticides, and in the industry for the production of plant cell wall-degrading enzymes. Trichoderma represents an important genus of endophytes, and several Trichoderma species have become excellent models for the study of fungal biology and plant-microbe interactions; moreover, are exceptional biotechnological factories for the production of bioactive molecules useful in agriculture and medicine. Next-generation sequencing technology coupled with systematic construction of recombinant DNA molecules provides powerful tools that contribute to the functional analysis of Trichoderma genetics, thus allowing for a better understanding of the underlying factors determining its biology. Here, we present the creation of diverse vectors containing (i) promoter-specific vectors for Trichoderma, (ii) gene deletions (using hygromycin phosphotransferase as selection marker), (iii) protein localization (mCherry and eGFP, which were codon-optimized for Trichoderma), (iv) gene complementation (neomycin phosphotransferase) and (v) overexpression of encoding gene proteins fused to fluorescent markers, by using the Golden Gate cloning technology. Furthermore, we present the design and implementation of a binary vector for Agrobacterium-mediated transformation in Trichoderma to increase the homologous recombination rate and the generation of a novel selection marker based on carboxin resistance.

3.
Front Microbiol ; 9: 3271, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30728815

RESUMO

In eukaryotic systems, membrane-bound NADPH oxidases (Nox) generate reactive oxygen species (ROS) as a part of normal physiological functions. In the soil-borne mycoparasitic and plant facultative symbiont Trichoderma atroviride, Nox1 and the regulator NoxR are involved in differentiation induced by mechanical damage, while the role of Nox2 has not been determined. The knock-out strains Δnox1, ΔnoxR and Δnox2 were compared to the parental strain (WT) in their ability to grow and conidiate under a series of stress conditions (osmotic, oxidative, membrane, and cell-wall stresses). All three genes were differentially involved in the stress-response phenotypes. In addition, several interactive experiments with biotic factors (plant seedlings and other fungi) were performed comparing the mutant phenotypes with the WT, which was used as the reference strain. Δnox1 and ΔnoxR significantly reduced the antagonistic activity of T. atroviride against Rhizoctonia solani and Sclerotinia sclerotiorum in direct confrontation assays, but Δnox2 showed similar activity to the WT. The Δnox1, ΔnoxR, and Δnox2 mutants showed quantitative differences in the emission of several volatile organic compounds (VOCs). The effects of a blend of these volatiles on plant-growth promotion of Arabidopsis thaliana seedlings were determined in closed-chamber experiments. The increase in root and shoot biomass induced by T. atroviride VOCs was significantly lowered by ΔnoxR and Δnox1, but not by Δnox2. In terms of fungistatic activity at a distance, Δnox2 had a significant reduction in this trait against R. solani and S. sclerotiorum, while fungistasis was highly increased by ΔnoxR and Δnox1. Identification and quantification of individual VOCs in the blends emitted by the strains was performed by GC-MS and the patterns of variation observed for individual volatiles, such as 6-Pentyl-2H-pyran-2-one (6PP-1) and (E)-6-Pent-1-enylpyran-2-one (6PP-2) were consistent with their negative effects in plant-growth promotion and positive effects in fungistasis at a distance. Nox1 and NoxR appear to have a ubiquitous regulatory role of in a variety of developmental and interactive processes in T. atroviride either as positive or negative modulators. Nox2 may also have a role in regulating production of VOCs with fungistatic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA