Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 21(3): 406-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253843

RESUMO

The discovery of the bioluminescence pathway in the fungus Neonothopanus nambi enabled engineering of eukaryotes with self-sustained luminescence. However, the brightness of luminescence in heterologous hosts was limited by performance of the native fungal enzymes. Here we report optimized versions of the pathway that enhance bioluminescence by one to two orders of magnitude in plant, fungal and mammalian hosts, and enable longitudinal video-rate imaging.


Assuntos
Eucariotos , Luminescência , Animais , Mamíferos
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674833

RESUMO

Hispidin is a polyketide found in plants and fungi. In bioluminescent fungi, hispidin serves as a precursor of luciferin and is produced by hispidin synthases. Previous studies revealed that hispidin synthases differ in orthologous polyketide synthases from non-bioluminescent fungi by the absence of two domains with predicted ketoreductase and dehydratase activities. Here, we investigated the hypothesis that the loss of these domains in evolution led to the production of hispidin and the emergence of bioluminescence. We cloned three orthologous polyketide synthases from non-bioluminescent fungi, as well as their truncated variants, and assessed their ability to produce hispidin in a bioluminescence assay in yeast. Interestingly, expression of the full-length enzyme hsPKS resulted in dim luminescence, indicating that small amounts of hispidin are likely being produced as side products of the main reaction. Deletion of the ketoreductase and dehydratase domains resulted in no luminescence. Thus, domain truncation by itself does not appear to be a sufficient step for the emergence of efficient hispidin synthases from orthologous polyketide synthases. At the same time, the production of small amounts of hispidin or related compounds by full-length enzymes suggests that ancestral fungal species were well-positioned for the evolution of bioluminescence.


Assuntos
Policetídeo Sintases , Pironas , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Óxido Nítrico Sintase/metabolismo , Fungos/genética , Fungos/metabolismo , Hidroliases/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499768

RESUMO

We report a systematic comparison of 19 plant promoters and 20 promoter-terminator combinations in two expression systems: agroinfiltration in Nicotiana benthamiana leaves, and Nicotiana tabacum BY-2 plant cell packs. The set of promoters tested comprised those not present in previously published work, including several computationally predicted synthetic promoters validated here for the first time. The expression of EGFP driven by different promoters varied by more than two orders of magnitude and was largely consistent between two tested Nicotiana systems. We confirmed previous reports of significant modulation of expression by terminators, as well as synergistic effects of promoters and terminators. Additionally, we observed non-linear effects of gene dosage on expression level. The dataset presented here can inform the design of genetic constructs for plant engineering and transient expression assays.


Assuntos
Nicotiana , Plantas , Nicotiana/genética , Regiões Promotoras Genéticas , Plantas/genética , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
4.
Sci Adv ; 10(10): eadk1992, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457503

RESUMO

The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis-a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors.


Assuntos
Luminescência , Plantas , Animais , Mamíferos
5.
J Fungi (Basel) ; 7(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922000

RESUMO

There is a large number of bioactive polyketides well-known for their anticancer, antibiotic, cholesterol-lowering, and other therapeutic functions, and hispidin is among them. It is a highly abundant secondary plant and fungal metabolite, which is investigated in research devoted to cancer, metabolic syndrome, cardiovascular, neurodegenerative, and viral diseases. This review summarizes over 20 years of hispidin studies of its antioxidant, anti-inflammatory, anti-apoptotic, antiviral, and anti-cancer cell activity.

6.
Nat Biotechnol ; 38(8): 944-946, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32341562

RESUMO

Autoluminescent plants engineered to express a bacterial bioluminescence gene cluster in plastids have not been widely adopted because of low light output. We engineered tobacco plants with a fungal bioluminescence system that converts caffeic acid (present in all plants) into luciferin and report self-sustained luminescence that is visible to the naked eye. Our findings could underpin development of a suite of imaging tools for plants.


Assuntos
Luciferina de Vaga-Lumes/metabolismo , Nicotiana/genética , Plantas Geneticamente Modificadas/metabolismo , Ácidos Cafeicos/metabolismo , Fungos/genética , Fungos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA