Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Appl Microbiol ; 133(3): 1832-1842, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35729710

RESUMO

AIMS: To assess the prevalence of Mycobacterium bovis bacilli in faecal samples of tuberculous cattle, and to better understand the risk of environmental dissemination of bovine tuberculosis (TB) through the spreading of manure or slurry. METHODS AND RESULTS: Faecal samples were collected from 72 naturally infected cattle with visible lesions of TB that had reacted to the tuberculin skin test and 12 cattle experimentally infected with M. bovis. These were examined by microbial culture and PCR to assess the presence of M. bovis bacilli. There were no positive cultures from any naturally infected test reactor animal. A single M. bovis colony was cultured from a faecal sample from one of the experimentally infected animals. A single PCR positive result was obtained from the faecal sample of one naturally infected test reactor. CONCLUSIONS: The prevalence of M. bovis in the faecal samples of TB-infected cattle was extremely low. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the risk of spreading TB through the use of slurry or manure as an agricultural fertilizer is lower than that suggested in some historical literature. The results could inform a reconsideration of current risk assessments and guidelines on the disposal of manure and slurry from TB-infected herds.


Assuntos
Mycobacterium bovis , Tuberculose Bovina , Tuberculose , Animais , Bovinos , Fezes , Esterco , Mycobacterium bovis/genética , Teste Tuberculínico/veterinária , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/microbiologia
2.
Proc Biol Sci ; 278(1713): 1913-20, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21123260

RESUMO

Control of bovine tuberculosis (TB) in cattle has proven particularly challenging where reservoirs of infection exist in wildlife populations. In Britain and Ireland, control is hampered by a reservoir of infection in Eurasian badgers (Meles meles). Badger culling has positive and negative effects on bovine TB in cattle and is difficult, costly and controversial. Here we show that Bacillus Calmette-Guérin (BCG) vaccination of captive badgers reduced the progression, severity and excretion of Mycobacterium bovis infection after experimental challenge. In a clinical field study, BCG vaccination of free-living badgers reduced the incidence of positive serological test results by 73.8 per cent. In common with other species, BCG did not appear to prevent infection of badgers subjected to experimental challenge, but did significantly reduce the overall disease burden. BCG vaccination of badgers could comprise an important component of a comprehensive programme of measures to control bovine TB in cattle.


Assuntos
Vacina BCG/uso terapêutico , Reservatórios de Doenças/veterinária , Mustelidae/imunologia , Tuberculose Bovina/prevenção & controle , Animais , Vacina BCG/imunologia , Bovinos , Inglaterra , Mustelidae/sangue , Mustelidae/microbiologia , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Tuberculose Bovina/transmissão
3.
Vaccine ; 36(15): 1990-1995, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525277

RESUMO

European badgers (Meles meles) are a wildlife reservoir for Mycobacterium bovis (M. bovis) in parts of England, Wales and Ireland, constituting a potential source of tuberculosis (TB) infection for cattle. Vaccination of badgers against TB is one of the tools available for helping reduce the prevalence of bovine TB in badgers, made possible by the licensing in 2010 of Bacillus Calmette-Guérin (BCG) vaccine for intramuscular administration to badgers (BadgerBCG). However, practical limitations associated with administering an injected vaccine to wild animals make an oral, bait-delivered form of the vaccine highly desirable. Evaluation of the safety of oral BCG to badgers and the environment is a mandatory step on the road to licensing an oral vaccine. This study had the following objectives: (a) to determine whether adverse effects followed the oral administration of BCG vaccine to badgers; (b) to measure the quantity and frequency of BCG excreted in the faeces of vaccinated badgers; and (c) to assess whether there was evidence of the vaccine spreading to unvaccinated, 'sentinel' badgers sharing the same environment as vaccinated animals. We report here that the oral administration per badger of ≥6.4 × 109 cfu BCG, followed 14 days later by a single oral dose of ≥6.4 × 107 cfu BCG caused no adverse physical effects and did not affect the social behaviour and feeding habits of the vaccinated animals. BCG was cultured from the faeces of two of nine vaccinated animals (372 cfu/g and 996 cfu/g, respectively) approximately 48 h after the higher dose of BCG was administered and by one of the nine vaccinated animal (80 cfu/g) approximately 24 h after receiving the lower dose of BCG. We found no evidence for the transmission of BCG to unvaccinated, sentinel, badgers housed with the vaccinated animals despite the occasional excretion of BCG in faeces.


Assuntos
Vacina BCG/efeitos adversos , Vacina BCG/imunologia , Mustelidae/imunologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/prevenção & controle , Administração Oral , Animais , Animais Selvagens , Vacina BCG/administração & dosagem , Temperatura Corporal , Bovinos , Reservatórios de Doenças/microbiologia , Feminino , Imunização , Masculino , Mustelidae/microbiologia , Fatores de Tempo , Tuberculose Bovina/transmissão
4.
BMC Vet Res ; 3: 12, 2007 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-17567891

RESUMO

BACKGROUND: We have evaluated a sensitive screening assay for Mycobacterium tuberculosis (MTB) complex organisms and a specific assay for detecting Mycobacterium bovis DNA in lymph nodes taken from cattle with evidence of bovine tuberculosis. Underlying these series of experiments was the need for a versatile DNA extraction protocol which could handle tissue samples and with the potential for automation.The target for the screening assay was the multi-copy insertion element IS1081, present in 6 copies in the MTB complex. For confirmation of M. bovis we used primers flanking a specific deletion in the genome of M. bovis known as region of difference 4 (RD4). The sensitivity and specificity of these PCRs has been tested on genomic DNA from MTB complex reference strains, mycobacteria other than tuberculosis (MOTT), spiked samples and on clinical material. RESULTS: The minimum detection limits of the IS1081 method was < I genome copy and for the RD4 PCR was 5 genome copies. Both methods can be readily adapted for quantitative PCR with the use of SYBR Green intercalating dye on the RotorGene 3000 platform (Corbett Research). Initial testing of field samples of bovine lymph nodes with visible lesions (VL, n = 109) highlighted two shortfalls of the molecular approach. Firstly, comparison of IS1081 PCR with the "gold standard" of culture showed a sensitivity of approximately 70%. The sensitivity of the RD4 PCR method was 50%. Secondly, the success rate of spoligotyping applied directly to clinical material was 51% compared with cultures. A series of further experiments indicated that the discrepancy between sensitivity of detection found with purified mycobacterial DNA and direct testing of field samples was due to limited mycobacterial DNA recovery from tissue homogenates rather than PCR inhibition. The resilient mycobacterial cell wall, the presence of tissue debris and the paucibacillary nature of some cattle VL tissue may all contribute to this observation. Any of these factors may restrict application of other more discriminant typing methods.A simple means of increasing the efficiency of mycobacterial DNA recovery was assessed using a further pool of 95 cattle VL. Following modification of the extraction protocol, detection rate with the IS1081 and RD4 methods increased to 91% and 59% respectively. CONCLUSION: The IS1081 PCR is a realistic screening method for rapid identification of positive cases but the sensitivity of single copy methods, like RD4 and also of spoligotyping will need to be improved to make these applicable for direct testing of tissue extracts.


Assuntos
Técnicas Bacteriológicas/veterinária , DNA Bacteriano/isolamento & purificação , Linfonodos/microbiologia , Mycobacterium bovis/isolamento & purificação , Reação em Cadeia da Polimerase/veterinária , Tuberculose Bovina/microbiologia , Animais , Técnicas Bacteriológicas/métodos , Técnicas Bacteriológicas/normas , Bovinos , Primers do DNA/química , Elementos de DNA Transponíveis/genética , Linfonodos/patologia , Mycobacterium bovis/genética , Mycobacterium bovis/crescimento & desenvolvimento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tuberculose Bovina/diagnóstico , Tuberculose Bovina/prevenção & controle
5.
Vaccine ; 35(6): 987-992, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28077246

RESUMO

The oral vaccination of wild badgers (Meles meles) with live Bacillus Calmette-Guérin (BCG) is one of the tools being considered for the control of bovine tuberculosis (caused by Mycobacterium bovis) in the UK. The design of a product for oral vaccination requires that numerous, and often competing, conditions are met. These include the need for a highly palatable, but physically stable bait that will meet regulatory requirements, and one which is also compatible with the vaccine formulation; in this case live BCG. In collaboration with two commercial bait companies we have developed a highly attractive and palatable bait recipe designed specifically for European badgers (Meles meles) that meets these requirements. The palatability of different batches of bait was evaluated against a standardised palatable control bait using captive badgers. The physical properties of the bait are described e.g. firmness and colour. The microbial load in the bait was assessed against European and US Pharmacopoeias. The bait was combined with an edible vaccine carrier made of hydrogenated peanut oil in which BCG vaccine was stable during bait manufacture and cold storage, demonstrating <0.5 log10 reduction in titre after 117weeks' storage at -20°C. BCG stability in bait was also evaluated at +4°C and under simulated environmental conditions (20°C, 98% Relative Humidity; RH). Finally, iophenoxic acid biomarkers were utilised as a surrogate for the BCG vaccine, to test variants of the vaccine-bait design for their ability to deliver biomarker to the gastrointestinal tract of individual animals. These data provide the first detailed description of a bait-vaccine delivery system developed specifically for the oral vaccination of badgers against Mycobacterium bovis using live BCG.


Assuntos
Vacina BCG/administração & dosagem , Reservatórios de Doenças/microbiologia , Mustelidae/imunologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/prevenção & controle , Vacinação/métodos , Administração Oral , Animais , Bovinos , Sistemas de Liberação de Medicamentos/métodos , Ácido Iopanoico/administração & dosagem , Mustelidae/microbiologia , Tuberculose Bovina/imunologia , Tuberculose Bovina/microbiologia , Potência de Vacina , Vacinas de Plantas Comestíveis
6.
Artigo em Inglês | MEDLINE | ID: mdl-28174695

RESUMO

The European badger (Meles meles) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for badgers and a research priority is the development of an oral vaccine deliverable to badgers in bait. Previous studies reported the successful vaccination of badgers with oral preparations of 108 colony forming units (CFU) of both Pasteur and Danish strains of BCG contained within a lipid matrix composed of triglycerides of fatty acids. Protection against TB in these studies was expressed as a reduction in the number and apparent progression of visible lesions, and reductions in the bacterial load and dissemination of infection. To reduce the cost of an oral vaccine and reduce the potential for environmental contamination with BCG, it is necessary to define the minimal efficacious dose of oral BCG for badgers. The objectives of the two studies reported here were to compare the efficacy of BCG Danish strain in a lipid matrix with unformulated BCG given orally, and to evaluate the efficacy of BCG Danish in a lipid matrix at a 10-fold lower dose than previously evaluated in badgers. In the first study, both BCG unformulated and in a lipid matrix reduced the number and apparent progression of visible lesions and the dissemination of infection from the lung. In the second study, vaccination with BCG in the lipid matrix at a 10-fold lower dose produced a similar outcome, but with greater intra-group variability than seen with the higher dose in the first study. Further research is needed before we are able to recommend a final dose of BCG for oral vaccination of badgers against TB or to know whether oral vaccination of wild badgers with BCG will significantly reduce transmission of the disease.


Assuntos
Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Mustelidae , Mycobacterium bovis/imunologia , Tuberculose/veterinária , Administração Oral , Animais , Relação Dose-Resposta Imunológica , Resultado do Tratamento , Tuberculose/imunologia , Tuberculose/prevenção & controle , Reino Unido
8.
Vaccine ; 29(21): 3782-90, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21440035

RESUMO

Mycobacterium bovis infection is widespread in Eurasian badger (Meles meles) populations in Great Britain and the Republic of Ireland where they act as a wildlife reservoir of infection for cattle. Removal of infected badgers can significantly reduce the incidence of bovine tuberculosis (TB) in local cattle herds. However, control measures based on culling of native wildlife are contentious and may even be detrimental to disease control. Vaccinating badgers with bacillus Calmette-Guerin (BCG) has been shown to be efficacious against experimentally induced TB of badgers when administered subcutaneously and orally. Vaccination may be an alternative or complementary strategy to other disease control measures. As the subcutaneous route is impractical for vaccinating wild badgers and an oral vaccine bait formulation is currently unavailable, we evaluated the intramuscular (IM) route of BCG administration. It has been demonstrated that the IM route is safe in badgers. IM administration has the practical advantage of being relatively easy to perform on trapped wild badgers without recourse to chemical immobilisation. We report the evaluation of the efficacy of IM administration of BCG Danish strain 1331 at two different doses: the dose prescribed for adult humans (2-8×10(5)colony forming units) and a 10-fold higher dose. Vaccination generated a dose-dependent cell-mediated immune response characterised by the production of interferon-γ (IFNγ) and protection against endobronchial challenge with virulent M. bovis. Protection, expressed in terms of a significant reduction in the severity of disease, the number of tissues containing acid-fast bacilli, and reduced bacterial excretion was statistically significant with the higher dose only.


Assuntos
Vacina BCG/administração & dosagem , Reservatórios de Doenças/microbiologia , Mustelidae/microbiologia , Mycobacterium bovis/isolamento & purificação , Tuberculose/veterinária , Animais , Feminino , Imunidade Celular , Injeções Intramusculares/veterinária , Interferon gama/sangue , Interferon gama/imunologia , Masculino , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Tuberculose/patologia , Tuberculose/prevenção & controle , Vacinação/veterinária
10.
J Clin Microbiol ; 44(1): 29-34, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16390943

RESUMO

To establish a molecular epidemiological baseline for the strains causing tuberculosis in Nigeria, a survey of isolates from humans and cattle was carried out. Spoligotyping and variable-number tandem-repeat analysis revealed that the majority of tuberculosis disease in humans in Ibadan, southwestern Nigeria, is caused by a single, closely related group of Mycobacterium tuberculosis strains. Using deletion typing, we show that approximately 13% of the disease in humans in this sample was caused by strains of Mycobacterium africanum and Mycobacterium bovis rather than M. tuberculosis. Molecular analysis of strains of M. bovis recovered from Nigerian cattle show that they form a group of closely related strains that show similarity to strains from neighboring Cameroon. Surprisingly, the strains of M. bovis recovered from humans do not match the molecular type of the cattle strains, and possible reasons for this are discussed. This is the first molecular analysis of M. tuberculosis complex strains circulating among humans and cattle in Nigeria, the results of which have significant implications for disease control.


Assuntos
Técnicas de Tipagem Bacteriana , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Tuberculose Bovina/microbiologia , Animais , Bovinos , DNA Bacteriano/genética , Humanos , Epidemiologia Molecular , Mycobacterium bovis/classificação , Mycobacterium tuberculosis/classificação , Nigéria , Especificidade da Espécie
11.
Proc Natl Acad Sci U S A ; 100(25): 15271-5, 2003 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-14657373

RESUMO

We have analyzed 11,500 isolates of Mycobacterium bovis (the cause of tuberculosis in cattle and other mammals) isolated in Great Britain (England, Wales and Scotland)] and characterized by spoligotype. Genetic exchange between cells is rare or absent in strains of the Mycobacterium tuberculosis complex so that, by using spoligotypes, it is possible to recognize "clones" with a recent common ancestor. The distribution of variable numbers of tandem repeats types in the most common clone in the data set is incompatible with random mutation and drift. The most plausible explanation is a series of "clonal expansions," and this interpretation is supported by the geographical distribution of different genotypes. We suggest that the clonal expansion of a genotype is caused either by the spread of a favorable mutation, together with all other genes present in the ancestral cell in which the mutation occurred, or by the invasion of a novel geographical region by a limited number of genotypes. A similar pattern is observed in M. tuberculosis (the main cause of tuberculosis in humans). The significance of clonal expansion in other bacteria that have recombination is discussed.


Assuntos
Fenômenos Fisiológicos Bacterianos , Modelos Genéticos , Mycobacterium bovis/genética , DNA Bacteriano , Variação Genética , Genótipo , Repetições Minissatélites , Mutação , Mycobacterium tuberculosis/genética , Filogenia , Reino Unido
12.
J Clin Microbiol ; 41(8): 3929-32, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12904421

RESUMO

The genomes of the tuberculin production strains Mycobacterium bovis AN5 and Mycobacterium tuberculosis DT were compared to genome-sequenced tubercle bacilli by using DNA microarrays. Neither the AN5 nor DT strain suffered extensive gene deletions during in vitro passage. This suggests that bovine tuberculin made from M. bovis AN5 is suitable to detect infection with presently prevalent M. bovis strains.


Assuntos
Genoma Bacteriano , Mycobacterium tuberculosis/genética , Tuberculina/genética , Deleção de Genes , Repetições Minissatélites , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade da Espécie
13.
J Clin Microbiol ; 42(2): 674-82, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14766836

RESUMO

Genotypic analysis was performed on 48 Mycobacterium tuberculosis complex strains collected from a hospital in Dhaka city. Deletion analysis showed that the isolates were all M. tuberculosis; 13 of them were found to be of the "ancestral" type, while 35 were of the "modern" type, indicating that both endemic (ancestral type) and epidemic (modern type) strains cause tuberculosis in Bangladesh. Genotyping based on the spoligotype and variable-number tandem repeats (VNTR) of mycobacterial interspersed repetitive units (MIRU) was also done. A total of 34 strains (71%) were grouped by spoligotyping into nine different clusters; the largest comprised 15 isolates of the Beijing genotype, whereas the remaining eight clusters consisted of two to five isolates. MIRU-VNTR typing detected 32 different patterns among 44 tested strains, and the 15 Beijing strains were further discriminated by MIRU-VNTR typing (7 distinct patterns for the 15 isolates). These results indicate that MIRU-VNTR typing, along with spoligotyping and deletion analysis, can be used effectively for molecular epidemiological studies to determine ongoing transmission clusters; to our knowledge, this is the first report about the type of strains prevailing in Bangladesh.


Assuntos
Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Adulto , Bangladesh/epidemiologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Prevalência , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA