Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 151: 113084, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35567985

RESUMO

We report the design, synthesis and evaluation of a class of phosphatidylserine-targeting zinc (II) dipicolylamine drug conjugates and show that conjugate 16b elicits immune cell infiltration and remodels the "cold" hepatic tumor microenvironment to the inflamed "hot" tumor. Structure-property relationship study via linker modifications and subsequent pharmacokinetics profiling were carried out to improve the solubility and stability of the conjugates in vivo. In a spontaneous hepatocellular carcinoma mouse model, we showed that conjugate 16b exhibited better antitumor efficacy than sorafenib. In particular, significant increase of CD8+ T cell infiltration and granzyme B level was observed, providing insights in sensitizing tumors from intrinsic immune suppressive microenvironment. Evaluation of tumor inflammation-related mRNA expression profile revealed that conjugate 16b, through inductions of key gene expressions including STAT1, CXCL9, CCL5, and PD-L1, rejuvenated tumor microenvironment with enhancement in T cell-, macrophage-, NK cell-, chemokines and cytokines'- functions. Our study establishes that an apoptosis-targeting theranostic enables enrichment of multifaceted immune cells into the tumor mass, which provides potential therapeutic strategies in the combination with immune checkpoint blockade treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Fosfatidilserinas , Microambiente Tumoral
2.
J Med Chem ; 65(19): 12802-12824, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36153998

RESUMO

Ligand-targeting drug delivery systems have made significant strides for disease treatments with numerous clinical approvals in this era of precision medicine. Herein, we report a class of small molecule-based immune checkpoint-targeting maytansinoid conjugates. From the ligand targeting ability, pharmacokinetics profiling, in vivo anti-pancreatic cancer, triple-negative breast cancer, and sorafenib-resistant liver cancer efficacies with quantitative mRNA analysis of treated-tumor tissues, we demonstrated that conjugate 40a not only induced lasting regression of tumor growth, but it also rejuvenated the once immunosuppressive tumor microenvironment to an "inflamed hot tumor" with significant elevation of gene expressions that were not accessible in the vehicle-treated tumor. In turn, the immune checkpoint-targeting small molecule drug conjugate from this work represents a new pharmacodelivery strategy that can be expanded with combination therapy with existing immune-oncology treatment options.


Assuntos
Fosfatidilserinas , Neoplasias de Mama Triplo Negativas , Humanos , Ligantes , RNA Mensageiro , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Microambiente Tumoral
3.
Redox Biol ; 46: 102126, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509914

RESUMO

Nitro-fatty acids are a class of endogenous electrophilic lipid mediators with anti-inflammatory and cytoprotective effects in a wide range of inflammatory and fibrotic disease models. While these beneficial biological effects of nitro-fatty acids are mainly attributed to their ability to form covalent adducts with proteins, only a small number of proteins are known to be nitro-alkylated and the scope of protein nitro-alkylation remains undetermined. Here we describe the synthesis and application of a clickable nitro-fatty acid probe for the detection and first global identification of mammalian proteins that are susceptible to nitro-alkylation. 184 high confidence nitro-alkylated proteins were identified in THP1 macrophages, majority of which are novel targets of nitro-fatty acids, including extended synaptotagmin 2 (ESYT2), signal transducer and activator of transcription 3 (STAT3), toll-like receptor 2 (TLR2), retinoid X receptor alpha (RXRα) and glucocorticoid receptor (NR3C1). In particular, we showed that 9-nitro-oleate covalently modified and inhibited dexamethasone binding to NR3C1. Bioinformatic analyses revealed that nitro-alkylated proteins are highly enriched in endoplasmic reticulum and transmembrane proteins, and are overrepresented in lipid metabolism and transport pathways. This study significantly expands the scope of protein substrates targeted by nitro-fatty acids in living cells and provides a useful resource towards understanding the pleiotropic biological roles of nitro-fatty acids as signaling molecules or as multi-target therapeutic agents.


Assuntos
Ácidos Graxos , Nitrocompostos , Alquilação , Animais , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA