Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemphyschem ; 25(9): e202400391, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38712664

RESUMO

The front cover artwork is provided by Prof. Papadantonakis' group. The image shows a Watson-Crick Guanine-Cytosine pair, and the difference between vertical and adiabatic ionization potentials. Read the full text of the Research Article at 10.1002/cphc.202300946.


Assuntos
Pareamento de Bases , Citosina , Guanina , Citosina/química , Guanina/química , DNA/química
2.
Chemphyschem ; 25(9): e202300946, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381922

RESUMO

Gas-phase and aqueous vertical ionization potentials, vIPgas and vIPaq respectively and measurements of the molecular electrostatic and local ionization maps calculated at the DFT/B3LYP-D3/ 6-311+G** level of theory and the C-PCM reaction field model for single- and double-stranded CpG and 5MeCpG pairs show that the vIPaq for single- and double-stranded pairs of C-G and 5MeC-G are practically the same, in the range of 5.79 to 5.81 eV. The aqueous adiabatic ionization potentials for single-stranded CpG and 5MeCpG are 5.52 eV and 5.51 eV respectively and they reflect the nuclear reorganization that takes place after the abstraction of the electron. The aqueous adiabatic ionization energy values that correspond to the CpG+. radical cation and the hydrated electron, e-,, being at infinite distance, adIPaq+Vo, are 3.92 eV and 3.91 eV respectively with (Vo=-1.6 eV) Analysis of data suggest that the HOMO-LUMO energy gap in the hard/soft-acid/base (HSAB) concept cannot be used a priori to determine the effect of cytosine methylation on the guanine enhanced oxidative damage in DNA.


Assuntos
Pareamento de Bases , Citosina , Teoria da Densidade Funcional , Guanina , Citosina/química , Guanina/química , DNA/química , Eletricidade Estática , Água/química
3.
Proteins ; 89(6): 683-696, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33491267

RESUMO

Phenylketonuria (PKU) is a genetic disorder that if left untreated can lead to behavioral problems, epilepsy, and even mental retardation. PKU results from mutations within the phenylalanine-4-hydroxylase (PAH) gene that encodes for the PAH protein. The study of all PAH causing mutations is improbable using experimental techniques. In this study, a collection of in silico resources, sorting intolerant from tolerant, Polyphen-2, PhD-SNP, and MutPred were used to identify possible pathogenetic and deleterious PAH non-synonymous single nucleotide polymorphisms (nsSNPs). We identified two variants of PAH, I65N and L311P, to be the most deleterious and disease causing nsSNPs. Molecular dynamics (MD) simulations were carried out to characterize these point mutations on the atomic level. MD simulations revealed increased flexibility and a decrease in the hydrogen bond network for both mutants compared to the native protein. Free energy calculations using the MM/GBSA approach found that BH4 , a drug-based therapy for PKU patients, had a higher binding affinity for I65N and L311P mutants compared to the wildtype protein. We also identify important residues in the BH4 binding pocket that may be of interest for the rational drug design of other PAH drug-based therapies. Lastly, free energy calculations also determined that the I65N mutation may impair the dimerization of the N-terminal regulatory domain of PAH.


Assuntos
Coenzimas/química , Fenilalanina Hidroxilase/química , Fenilcetonúrias/genética , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Sítios de Ligação , Biopterinas/análogos & derivados , Coenzimas/metabolismo , Desenho de Fármacos , Expressão Gênica , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Especificidade por Substrato , Termodinâmica
4.
Proc Natl Acad Sci U S A ; 107(13): 5821-6, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20220103

RESUMO

Protein-chromophore interactions in photoreceptors often shift the chromophore absorbance maximum to a biologically relevant spectral region. A fundamental question regarding such spectral tuning effects is how the electronic ground state S(0) and excited state S(1) are modified by the protein. It is widely assumed that changes in energy gap between S(0) and S(1) are the main factor in biological spectral tuning. We report a generally applicable approach to determine if a specific residue modulates the energy gap, or if it alters the equilibrium nuclear geometry or width of the energy surfaces. This approach uses the effects that changes in these three parameters have on the absorbance and fluorescence emission spectra of mutants. We apply this strategy to a set of mutants of photoactive yellow protein (PYP) containing all 20 side chains at active site residue 46. While the mutants exhibit significant variation in both the position and width of their absorbance spectra, the fluorescence emission spectra are largely unchanged. This provides strong evidence against a major role for changes in energy gap in the spectral tuning of these mutants and reveals a change in the width of the S(1) energy surface. We determined the excited state lifetime of selected mutants and the observed correlation between the fluorescence quantum yield and lifetime shows that the fluorescence spectra are representative of the energy surfaces of the mutants. These results reveal that residue 46 tunes the absorbance spectrum of PYP largely by modulating the width of the S(1) energy surface.


Assuntos
Proteínas de Bactérias/química , Fotorreceptores Microbianos/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Fenômenos Biofísicos , Domínio Catalítico/genética , Halorhodospira halophila/química , Halorhodospira halophila/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fotorreceptores Microbianos/genética , Teoria Quântica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Fluorescência , Espectrofotometria
5.
Biochemistry ; 47(52): 13800-10, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19102703

RESUMO

Protein-ligand interactions alter the properties of active site groups to achieve specific biological functions. The active site of photoactive yellow protein (PYP) provides a model system for studying such functional tuning. PYP is a small bacterial photoreceptor with photochemistry based on its p-coumaric acid (pCA) chromophore. The absorbance maximum and pK(a) of the pCA in the active site of native PYP are shifted from 400 nm and 8.8 in water to 446 nm and 2.8 in the native protein milieu, respectively, by protein-ligand interactions. We report high-throughput microscale methods for the purification and spectroscopic investigation of PYP and use these to examine the role of active site residue Glu46 in PYP, which is hydrogen bonded to the pCA anion. The functional and structural attributes of the 19 substitution mutants of PYP at critical active site position 46 vary widely, with absorbance maxima from 441 to 478 nm, pCA fluorescence quantum yields from 0.19 to 1.4%, pCA pK(a) values from 3.0 to 9.0, and protein folding stabilities from 6.5 to 12.9 kcal/mol. The kinetics of the last photocycle transition vary by more than 4 orders of magnitude and are often strongly biphasic. Only E46Q PYP exhibits a greatly accelerated photocycling rate. All substitutions yield a folded, photoactive PYP, illustrating the robustness of protein structure and function. Correlations between side chain and mutant properties establish the importance of residue 46 in tuning the function of PYP and the significance of the strength of its hydrogen bond to the pCA. Native PYP exhibits the lowest values for pCA fluorescence quantum yield and pK(a), indicating their functional relevance. These results demonstrate the value of quantitative high-throughput biophysical studies of proteins.


Assuntos
Proteínas de Bactérias/química , Ácidos Cumáricos/química , Fotorreceptores Microbianos/química , Domínio Catalítico , Ligação de Hidrogênio , Ligantes , Mutação , Fotoquímica , Ligação Proteica , Conformação Proteica , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA