Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 611(7937): 688-694, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352223

RESUMO

Metal halide perovskites are attracting a lot of attention as next-generation light-emitting materials owing to their excellent emission properties, with narrow band emission1-4. However, perovskite light-emitting diodes (PeLEDs), irrespective of their material type (polycrystals or nanocrystals), have not realized high luminance, high efficiency and long lifetime simultaneously, as they are influenced by intrinsic limitations related to the trade-off of properties between charge transport and confinement in each type of perovskite material5-8. Here, we report an ultra-bright, efficient and stable PeLED made of core/shell perovskite nanocrystals with a size of approximately 10 nm, obtained using a simple in situ reaction of benzylphosphonic acid (BPA) additive with three-dimensional (3D) polycrystalline perovskite films, without separate synthesis processes. During the reaction, large 3D crystals are split into nanocrystals and the BPA surrounds the nanocrystals, achieving strong carrier confinement. The BPA shell passivates the undercoordinated lead atoms by forming covalent bonds, and thereby greatly reduces the trap density while maintaining good charge-transport properties for the 3D perovskites. We demonstrate simultaneously efficient, bright and stable PeLEDs that have a maximum brightness of approximately 470,000 cd m-2, maximum external quantum efficiency of 28.9% (average = 25.2 ± 1.6% over 40 devices), maximum current efficiency of 151 cd A-1 and half-lifetime of 520 h at 1,000 cd m-2 (estimated half-lifetime >30,000 h at 100 cd m-2). Our work sheds light on the possibility that PeLEDs can be commercialized in the future display industry.

2.
Nano Lett ; 24(15): 4528-4536, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573311

RESUMO

Enzymes in nature efficiently catalyze chiral organic molecules by elaborately tuning the geometrical arrangement of atoms in the active site. However, enantioselective oxidation of organic molecules by heterogeneous electrocatalysts is challenging because of the difficulty in controlling the asymmetric structures of the active sites on the electrodes. Here, we show that the distribution of chiral kink atoms on high-index facets can be precisely manipulated even on single gold nanoparticles; and this enabled stereoselective oxidation of hydroxyl groups on various sugar molecules. We characterized the crystallographic orientation and the density of kink atoms and investigated their specific interactions with the glucose molecule due to the geometrical structure and surface electrostatic potential.

3.
J Am Chem Soc ; 145(31): 17220-17231, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37492900

RESUMO

In electrochemical ethanol oxidation reactions (EOR) catalyzed by Pt metal nanoparticles through a C2 route, the dissociation of the C-C bond in the ethanol molecule can be a limiting factor. Complete EOR processes producing CO2 were always exemplified by the oxidative dehydrogenation of C1 intermediates, a reaction route with less energy utilization efficiency. Here, we report a Pt3Ga/C electrocatalyst with a uniform distribution of Ga over the nanoparticle surface for EOR that produces CO2 at medium potentials (>0.3 V vs SCE) efficiently through direct and sustainable oxidation of C2 intermediate species, i.e., acetaldehyde. We demonstrate the excellent performance of the Pt3Ga-200/C catalyst by using electrochemical in situ Fourier transform infrared reflection spectroscopy (FTIR) and an isotopic labeling method. The atomic interval structure between Pt and Ga makes the surface of nanoparticles nonensembled, avoiding the formation of poisonous *CHx and *CO species via bridge-type adsorption of ethanol molecules. Meanwhile, the electron redistribution from Ga to Pt diminishes the *O/*OH adsorption and CO poisoning on Pt atoms, exposing more available sites for interaction with the C2 intermediates. Furthermore, the dissociation of H2O into *OH is facilitated by the high hydrophilicity of Ga, which is supported by DFT calculations, promoting the deep oxidation of C2 intermediates. Our work represents an extremely rare EOR process that produces CO2 without observing kinetic limitations under medium potential conditions.

4.
J Am Chem Soc ; 145(49): 26632-26644, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047734

RESUMO

The water oxidation reaction, the most important reaction for hydrogen production and other sustainable chemistry, is efficiently catalyzed by the Mn4CaO5 cluster in biological photosystem II. However, synthetic Mn-based heterogeneous electrocatalysts exhibit inferior catalytic activity at neutral pH under mild conditions. Symmetry-broken Mn atoms and their cooperative mechanism through efficient oxidative charge accumulation in biological clusters are important lessons but synthesis strategies for heterogeneous electrocatalysts have not been successfully developed. Here, we report a crystallographically distorted Mn-oxide nanocatalyst, in which Ir atoms break the space group symmetry from I41/amd to P1. Tetrahedral Mn(II) in spinel is partially replaced by Ir, surprisingly resulting in an unprecedented crystal structure. We analyzed the distorted crystal structure of manganese oxide using TEM and investigated how the charge accumulation of Mn atoms is facilitated by the presence of a small amount of Ir.

5.
Opt Lett ; 39(17): 5062-5, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25166074

RESUMO

We examined the ultrafast dynamics of photocarriers in nanocrystalline ZnOxNy thin films as a function of compositional variation using femtosecond differential transmittance spectroscopy. The relaxation dynamics of photogenerated carriers and electronic structures are strongly dependent on nitrogen concentration. Photocarriers of ZnOxNy films relax on two different time scales. Ultrafast relaxation over several picoseconds is observed for all chemical compositions. However, ZnO and oxygen-rich phases show slow relaxation (longer than several nanoseconds), whereas photocarriers of films with high nitrogen concentrations relax completely on subnanosecond time scales. These relaxation features may provide a persistent photocurrent-free and prompt photoresponsivity for ZnOxNy with high nitrogen concentrations, as opposed to ZnO for display applications.

6.
Phys Rev Lett ; 110(23): 235502, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25167510

RESUMO

We investigate using first-principles calculations the atomic structure of the orthorhombic phase of Ta(2)O(5). Although this structure has been studied for decades, the correct structural model is controversial owing to the complication of structural disorder. We identify a new low-energy high-symmetry structural model, where all Ta and O atoms have the correct formal oxidation states of +5 and -2, respectively, and the experimentally reported triangular lattice symmetry of the Ta sublattice appears dynamically at finite temperatures. To understand the complex atomic structure of the Ta(2)O(3) plane, a triangular graph-paper representation is devised and used alongside oxidation state analysis to reveal infinite variations of the low-energy structural model. The structural disorder of Ta(2)O(5) observed in experiments is attributed to the intrinsic structural variations, and oxygen vacancies that drive the collective relaxation of the O sublattice.

7.
Microsc Microanal ; 19 Suppl 5: 109-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23920186

RESUMO

The interfacial layer between the Al2O3 layer and the Si3N4 layer formed after postdeposition annealing (PDA) of TaN/Al2O3/Si3N4/SiO2/Si (TANOS) stacks was investigated using transmission electron microscopy (TEM), scanning transmission electron microscopy, and electron energy loss spectroscopy (EELS). From the result of the TEM analysis, it was found that the 2-nm-thick interface layer between Al2O3 and Si3N4 layers was amorphous. The high-loss EELS analysis showed that the phases of the interfacial layer weakly bound together instead of the substoichiometric silicon oxide and amorphous Al2O3 near the bottom interface of the crystalline Al2O3. The low-loss EELS analysis showed that aluminum existed in metallic state at the interface. Therefore, we speculated that SiO(x)N(y) could be formed by oxidation of Si3N4 during PDA and that metallic aluminum could be formed by the decomposition of weakly bound amorphous Al2O3 during electron irradiation. These complicated reactions near the interface could induce oxygen deficiency in the Al2O3 layer and finally degrade the retention properties of TANOS stacks.

8.
Nano Lett ; 12(3): 1638-42, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22364234

RESUMO

We report on rapid thermal chemical vapor deposition growth of silicon nanowires (Si NWs) that contain a high density of gold nanoclusters (Au NCs) with a uniform coverage over the entire length of the nanowire sidewalls. The Au NC-coated Si NWs with an antibody-coated surface obtain the unique capability to capture breast cancer cells at twice the highest efficiency currently achievable (~88% at 40 min cell incubation time) from a nanostructured substrate. We also found that irradiation of breast cancer cells captured on Au NC-coated Si NWs with a near-infrared light resulted in a high mortality rate of these cancer cells, raising a fine prospect for simultaneous capture and plasmonic photothermal therapy for circulating tumor cells.


Assuntos
Ouro/química , Hipertermia Induzida/métodos , Nanoestruturas/química , Neoplasias Experimentais/terapia , Células Neoplásicas Circulantes/efeitos da radiação , Fototerapia/métodos , Silício/química , Linhagem Celular Tumoral , Ouro/efeitos da radiação , Humanos , Luz , Nanoestruturas/efeitos da radiação , Silício/efeitos da radiação
9.
Adv Mater ; 34(2): e2106215, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34632653

RESUMO

Color-selective multifunctional and multiplexed photodetectors have attracted considerable interest with the increasing demand for color filter-free optoelectronics which can simultaneously process multispectral signal via minimized system complexity. The low efficiency of color-filter technology and conventional laterally pixelated photodetector array structures often limit opportunities for widespread realization of high-density photodetectors. Here, low-temperature solution-processed vertically stacked full color quantum dot (QD) phototransistor arrays are developed on plastic substrates for high-resolution color-selective photosensor applications. Particularly, the three different-sized/color (RGB) QDs are vertically stacked and pixelated via direct photopatterning using a unique chelating chalcometallate ligand functioning both as solubilizing component and, after photoexposure, a semiconducting cement creating robust, insoluble, and charge-efficient QD layers localized in the a-IGZO transistor region, resulting in efficient wavelength-dependent photo-induced charge transfer. Thus, high-resolution vertically stacked full color QD photodetector arrays are successfully implemented with the density of 5500 devices cm-2 on ultrathin flexible polymeric substrates with highly photosensitive characteristics such as photoresponsivity (1.1 × 104 AW-1 ) and photodetectivity (1.1 × 1018 Jones) as well as wide dynamic ranges (>150 dB).

10.
Adv Mater ; 34(12): e2108979, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35044005

RESUMO

Artificial photonic synapses are emerging as a promising implementation to emulate the human visual cognitive system by consolidating a series of processes for sensing and memorizing visual information into one system. In particular, mimicking retinal functions such as multispectral color perception and controllable nonvolatility is important for realizing artificial visual systems. However, many studies to date have focused on monochromatic-light-based photonic synapses, and thus, the emulation of color discrimination capability remains an important challenge for visual intelligence. Here, an artificial multispectral color recognition system by employing heterojunction photosynaptic transistors consisting of ratio-controllable mixed quantum dot (M-QD) photoabsorbers and metal-oxide semiconducting channels is proposed. The biological photoreceptor inspires M-QD photoabsorbers with a precisely designed red (R), green (G), and blue (B)-QD ratio, enabling full-range visible color recognition with high photo-to-electric conversion efficiency. In addition, adjustable synaptic plasticity by modulating gate bias allows multiple nonvolatile-to-volatile memory conversion, leading to chromatic control in the artificial photonic synapse. To ensure the viability of the developed proof of concept, a 7 × 7 pixelated photonic synapse array capable of performing outstanding color image recognition based on adjustable wavelength-dependent volatility conversion is demonstrated.


Assuntos
Pontos Quânticos , Cognição , Humanos , Óptica e Fotônica , Retina , Sinapses
11.
Adv Mater ; 33(45): e2105017, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34553426

RESUMO

The complete hardware implementation of an optoelectronic neuromorphic computing system is considered as one of the most promising solutions to realize energy-efficient artificial intelligence. Here, a fully light-driven and scalable optoelectronic neuromorphic circuit with metal-chalcogenide/metal-oxide heterostructure phototransistor and photovoltaic divider is proposed. To achieve wavelength-selective neural operation and hardware-based pattern recognition, multispectral light modulated bidirectional synaptic circuits are utilized as an individual pixel for highly accurate and large-area neuromorphic computing system. The wavelength selective control of photo-generated charges at the heterostructure interface enables the bidirectional synaptic modulation behaviors including the excitatory and inhibitory modulations. More importantly, a 7 × 7 neuromorphic pixel circuit array is demonstrated to show the viability of implementing highly accurate hardware-based pattern training. In both the pixel training and pattern recognition simulation, the neuromorphic circuit array with the bidirectional synaptic modulation exhibits lower training errors and higher recognition rates, respectively.


Assuntos
Inteligência Artificial , Luz , Transistores Eletrônicos , Compostos de Cádmio/química , Eletricidade , Gálio/química , Índio/química , Porosidade , Sulfetos/química , Óxido de Zinco/química
12.
Adv Mater ; 33(38): e2100653, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338357

RESUMO

Anisotropic gold nanoplates (NPLs) have raised the interesting possibility that their reduced geometrical symmetry allows fine tuning of their optical properties associated with the excitation of localized surface plasmon resonances (LSPRs). Recent developments have greatly improved LSPR tunability by utilizing the spatial distribution of LSPR modes. However, the nanoscale interplay between defect-induced mechanical strain and the spatial variation of LSPR modes remains poorly understood. In this work, the combination of high spatial- and spectral-resolution mapping of LSPR modes and nanoscale strain mapping using aberration-corrected transmission electron microscopy are applied to investigate the nanoscale distribution of LSPR modes in an ultrathin single hexagonal gold NPL and the effect of defect-induced strains on its LSPR properties. The electron energy-loss spectral maps reveal four distinct LSPR components and intensity distributions of all LSPR modes in a hexagonal gold NPL. Furthermore, the strain maps provide experimental evidence that the tensile strain field induced by a Z-shaped faulted dipole is responsible for the asymmetric distribution of LSPR intensity in a hexagonal gold NPL.

13.
Nat Commun ; 12(1): 6766, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799571

RESUMO

Single-atom-catalysts (SACs) afford a fascinating activity with respect to other nanomaterials for hydrogen evolution reaction (HER), yet the simplicity of single-atom center limits its further modification and utilization. Obtaining bimetallic single-atom-dimer (SAD) structures can reform the electronic structure of SACs with added atomic-level synergistic effect, further improving HER kinetics beyond SACs. However, the synthesis and identification of such SAD structure remains conceptually challenging. Herein, systematic first-principle screening reveals that the synergistic interaction at the NiCo-SAD atomic interface can upshift the d-band center, thereby, facilitate rapid water-dissociation and optimal proton adsorption, accelerating alkaline/acidic HER kinetics. Inspired by theoretical predictions, we develop a facile strategy to obtain NiCo-SAD on N-doped carbon (NiCo-SAD-NC) via in-situ trapping of metal ions followed by pyrolysis with precisely controlled N-moieties. X-ray absorption spectroscopy indicates the emergence of Ni-Co coordination at the atomic-level. The obtained NiCo-SAD-NC exhibits exceptional pH-universal HER-activity, demanding only 54.7 and 61 mV overpotentials at -10 mA cm-2 in acidic and alkaline media, respectively. This work provides a facile synthetic strategy for SAD catalysts and sheds light on the fundamentals of structure-activity relationships for future applications.

14.
Nano Lett ; 9(5): 1780-6, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19435375

RESUMO

Methods of producing Si nanodots embedded in films of silicon oxide and silicon nitride abound, but fabrication of Si nanodots in a nanowire of these materials is very rare despite the fact that nanowire architecture enhances the charge collection and transport efficiencies for solar cells and field-effect transistors. We report a novel fabrication method for a high-density array of size-controlled sillicon nanodots from a silicon oxide nanowire using electron-beam irradiation. Our results demonstrate that a highly dense phase of Si nanodots with a narrow size distribution can be made from a silicon oxide nanowire with a core-shell structure of crystalline silicon-rich oxide (c-SRO)/amorphous silicon oxide (a-SiO(2)). This new nanomaterial shows the carrier transport characteristics of a semiconductor. The initially produced amorphous Si nanodots can be readily turned into crystalline Si (c-Si) nanodots by thermal annealing. Key characteristics of c-Si nanodots such as their size, number density, and rate of nucleation and growth are easily controlled by varying the electron radiation dose and annealing temperature. Nanodot formation is mechanistically initiated by electron trapping at the c-SRO core as well as at the core-shell interface, which leads to out-diffusion of the negatively charged oxygen through Coulomb repulsion, fostering the aggregation of Si atoms.

16.
Sci Rep ; 10(1): 219, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937814

RESUMO

As organic photodetectors with less than 1 µm pixel size are in demand, a new way of enhancing the sensitivity of the photodetectors is required to compensate for its degradation due to the reduction in pixel size. Here, we used Ag nanoparticles coated with SiOxNy as a light-absorbing layer to realize the scale-down of the pixel size without the loss of sensitivity. The surface plasmon resonance appeared at the interface between Ag nanoparticles and SiOxNy. The plasmon resonance endowed the organic photodetector with boosted photon absorption and external quantum efficiency. As the Ag nanoparticles with SiOxNy are easily deposited on ITO/SiO2, it can be adapted into various organic color image sensors. The plasmon-supported organic photodetector is a promising solution for realizing color image sensors with high resolution below 1 µm.

17.
Dalton Trans ; 48(26): 9617-9624, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30848277

RESUMO

Amino triphenolate ligands have been widely used for the synthesis of various transition metal complexes aiming at various applications such as ring-opening polymerization, olefin polymerization, and sulfoxidation. However, the introduction of highly sterically demanding aromatic substituents, such as triisopropylphenyl (TRIP), to the amino triphenolate ligand has not been previously reported probably due to the synthetic difficulty. In six-step reactions using commercial materials, a highly sterically demanding amino triphenolate ligand was successfully synthesized, and early transition metal complexes (Ti, V, Cr, Mn) supported by the ligand were also obtained and fully characterized. In addition, titanium and chromium complexes were further used for catalytic sulfoxidation, and polymerization of ethylene, respectively.

18.
Org Lett ; 21(24): 9950-9953, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31799856

RESUMO

Organophotocatalytic C-C and C-B bond formation reactions of aryl halides have been developed in the presence of an organophotosensitizer, 3,7-di([1,1'-biphenyl]-4-yl)-10-(4-(trifluoromethyl)phenyl)-10H-phenoxazine that has highly negative reduction potential at its photoexcited state. The developed reaction conditions are mild and allow the intermolecular C-C bond formation of the generated aryl radical with electron-rich (hetero)arenes and C-B bond formation with bis(pinacolato)diboron.

19.
Adv Sci (Weinh) ; 6(6): 1800843, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30937254

RESUMO

Layered lithium transition-metal oxide materials, e.g., Li(Ni1- x - y Co x Mn y )O2 (NCM) and Li(Ni1- x - y Co x Al y )O2, are the most promising candidates for lithium-ion battery cathodes. They generally consist of ≈10 µm spherical particles densely packed with smaller particles (0.1-1 µm), called secondary and primary particles, respectively. The micrometer- to nanometer-sized particles are critical to the battery performance because they affect the reaction capability of the cathode. Herein, the crystal structure of the primary particles of NCM materials is revisited. Elaborate transmission electron microscopy investigations reveal that the so-called primary particles, often considered as single crystals, are in fact polycrystalline secondary particles. They contain low-angle and exceptionally stable special grain boundaries (GBs) presumably created during aggregation via an oriented attachment mechanism. Therefore, this so-called primary particle is renamed as primary-like particle. More importantly, the low-angle GBs between the smaller true primary particles cause the development of nanocracks within the primary-like particles of Ni-rich NCM cathodes after repetitive electrochemical cycles. In addition to rectifying a prevalent misconception about primary particles, this study provides a previously unknown but important origin of structural degradation in Ni-rich layered cathodes.

20.
Nat Commun ; 10(1): 2537, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182709

RESUMO

Hybrid carbon nanotube composites with two different types of fillers have attracted considerable attention for various advantages. The incorporation of micro-scale secondary fillers creates an excluded volume that leads to the increase in the electrical conductivity. By contrast, nano-scale secondary fillers shows a conflicting behavior of the decreased electrical conductivity with micro-scale secondary fillers. Although several attempts have been made in theoretical modeling of secondary-filler composites, the knowledge about how the electrical conductivity depends on the dimension of secondary fillers was not fully understood. This work aims at comprehensive understanding of the size effect of secondary particulate fillers on the electrical conductivity, via the combination of Voronoi geometry induced from Swiss cheese models and the underlying percolation theory. This indicates a transition in the impact of the excluded volume, i.e., the adjustment of the electrical conductivity was measured in cooperation with loading of second fillers with different sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA