Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Neurosci Res ; 96(9): 1490-1517, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28467636

RESUMO

We examined in detail the distribution of AZIN2 (antizyme inhibitor 2) expression in the adult mouse hindbrain and neighboring spinal cord. AZIN2, similar to previously known AZIN1, is a recently-discovered, a functional paralog of ornithine decarboxylase (ODC). Due to their structural similarity to ODC, both AZIN1 and AZIN2 counteract the inhibitory action of 3 known antizymes (AZ1-3) on the ODC synthesis of polyamines, thus increasing intracytoplasmic levels of polyamines. AZIN2 is strongly, but heterogeneously, expressed in the brain. Our study uses a mouse line carrying an AZIN2-LacZ construct, and, in our topographic analysis of AZIN2-positive structures, we intend to share new knowledge about the rhombomeric segmentation of the hindbrain (a function of Hox paralogs and other genes). The observed labeled cell populations predominantly coincide with known cholinergic and glutamatergic cells, but occasionally also correspond to GABAergic, and possibly glycinergic cells. Some imperfectly known hindbrain populations stood out in unprecedented detail, and some axonal tracts were also differentially stained. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas de Transporte/análise , Neurônios/metabolismo , Rombencéfalo/metabolismo , Animais , Proteínas de Transporte/genética , Óperon Lac/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Biochim Biophys Acta Gen Subj ; 1862(3): 365-376, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29108956

RESUMO

Ornithine decarboxylase (ODC) is a key enzyme in the biosynthesis of polyamines. ODC-antizyme inhibitors (AZINs) are homologous proteins of ODC, devoid of enzymatic activity but acting as regulators of polyamine levels. The last paralogue gene recently incorporated into the ODC/AZINs family is the murine Gm853, which is located in the same chromosome as AZIN2, and whose biochemical function is still unknown. By means of transfection assays of HEK293T cells with a plasmid containing the coding region of Gm853, we show here that unlike ODC, GM853 was a stable protein that was not able to decarboxylate l-ornithine or l-lysine and that did not act as an antizyme inhibitor. However, GM853 showed leucine decarboxylase activity, an enzymatic activity never described in animal cells, and by acting on l-leucine (Km=7.03×10-3M) it produced isopentylamine, an aliphatic monoamine with unknown function. The other physiological branched-chain amino acids, l-valine and l-isoleucine were poor substrates of the enzyme. Gm853 expression was mainly detected in the kidney, and as Odc, it was stimulated by testosterone. The conservation of Gm853 orthologues in different mammalian species, including primates, underlines the possible biological significance of this new enzyme. In this study, we describe for the first time a mammalian enzyme with leucine decarboxylase activity, therefore proposing that the gene Gm853 and its protein product should be named as leucine decarboxylase (Ldc, LDC).


Assuntos
Rim/enzimologia , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Carboxiliases , Indução Enzimática/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ornitina Descarboxilase/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Propionato de Testosterona/farmacologia , Transfecção
3.
Amino Acids ; 48(10): 2411-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27084713

RESUMO

Antizymes and antizyme inhibitors are key regulatory proteins of polyamine levels by affecting ornithine decarboxylase and polyamine uptake. Our previous studies indicated a metabolic interplay among polyamines, histamine and serotonin in mast cells, and demonstrated that polyamines are present in mast cell secretory granules, being important for histamine storage and serotonin levels. Recently, the novel antizyme inhibitor-2 (AZIN2) was proposed as a local regulator of polyamine biosynthesis in association with mast cell serotonin-containing granules. To gain insight into the role of AZIN2 in the biosynthesis and storage of serotonin and histamine, we have generated bone marrow derived mast cells (BMMCs) from both wild-type and transgenic Azin2 hypomorphic mice, and have analyzed polyamines, serotonin and histamine contents, and some elements of their metabolisms. Azin2 hypomorphic BMMCs did not show major mast cell phenotypic alterations as judged by morphology and specific mast cell proteases. However, compared to wild-type controls, these cells showed reduced spermidine and spermine levels, and diminished growth rate. Serotonin levels were also reduced, whereas histamine levels tended to increase. Accordingly, tryptophan hydroxylase-1 (TPH1; the key enzyme for serotonin biosynthesis) mRNA expression and protein levels were reduced, whereas histidine decarboxylase (the enzyme responsible for histamine biosynthesis) enzymatic activity was increased. Furthermore, microphtalmia-associated transcription factor, an element involved in the regulation of Tph1 expression, was reduced. Taken together, our results show, for the first time, an element of polyamine metabolism -AZIN2-, so far described as exclusively devoted to the control of polyamine concentrations, involved in regulating the biosynthesis and content of other amines like serotonin and histamine.


Assuntos
Células da Medula Óssea/metabolismo , Proteínas de Transporte/metabolismo , Histamina/biossíntese , Mastócitos/metabolismo , Serotonina/biossíntese , Animais , Células da Medula Óssea/citologia , Proteínas de Transporte/genética , Células Cultivadas , Mastócitos/citologia , Camundongos , Triptofano Hidroxilase/metabolismo
4.
Amino Acids ; 47(5): 1025-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25655388

RESUMO

Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.


Assuntos
Agmatina/metabolismo , Carboxiliases/genética , Proteínas de Transporte/genética , Inibidores da Ornitina Descarboxilase/farmacologia , Ornitina Descarboxilase/genética , Agmatina/antagonistas & inibidores , Animais , Transporte Biológico/efeitos dos fármacos , Células COS , Carboxiliases/metabolismo , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Furanos/farmacologia , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Guanidina/análogos & derivados , Guanidina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Ornitina Descarboxilase/metabolismo , Putrescina/farmacologia , Espermidina/farmacologia , Espermina/farmacologia , Transfecção
5.
Biochim Biophys Acta ; 1830(11): 5157-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23872168

RESUMO

BACKGROUND: Ornithine decarboxylase (ODC), the key enzyme in the polyamine biosynthetic pathway, is highly regulated by antizymes (AZs), small proteins that bind and inhibit ODC and increase its proteasomal degradation. Early studies delimited the putative AZ-binding element (AZBE) to the region 117-140 of ODC. The aim of the present work was to study the importance of certain residues of the region 110-142 that includes the AZBE region for the interaction between ODC and AZ1 and the ODC functionality. METHODS: Computational analysis of the protein sequences of the extended AZBE site of ODC and ODC paralogues from different eukaryotes was used to search for conserved residues. The influence of these residues on ODC functionality was studied by site directed mutagenesis, followed by different biochemical techniques. RESULTS: The results revealed that: a) there are five conserved residues in ODC and its paralogues: K115, A123, E138, L139 and K141; b) among these, L139 is the most critical one for the interaction with AZs, since its substitution decreases the affinity of the mutant protein towards AZs; c) all these conserved residues, with the exception of A123, are critical for ODC activity; d) substitutions of K115, E138 or L139 diminish the formation of ODC homodimers. CONCLUSIONS: These results reveal that four of the invariant residues of the AZBE region are strongly related to ODC functionality. GENERAL SIGNIFICANCE: This work helps to understand the interaction between ODC and AZ1, and describes various new residues involved in ODC activity, a key enzyme for cell growth and proliferation.


Assuntos
Ornitina Descarboxilase/genética , Proteínas/genética , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Análise Mutacional de DNA/métodos , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ornitina Descarboxilase/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/metabolismo
6.
J Cell Biochem ; 114(9): 1978-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23519605

RESUMO

The role that the induction of cardiac ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, by beta-adrenergic agents may have in heart hypertrophy is a controversial issue. Besides, the signaling pathways related to cardiac ODC regulation have not been fully elucidated. Here we show that in Balb C mice the stimulation of cardiac ODC activity by adrenergic agents was mainly mediated by ß2 -adrenergic receptors, and that this induction was lower in the hypertrophic heart. Interestingly, this stimulation was abolished by the L-calcium channel antagonists verapamil and nifedipine. In addition, whereas the treatment with ß2 -adrenergic agents was associated to both the increases in ODC, ODC-antizyme inhibitor 1 (AZIN1), c-fos and c-myc mRNA levels and the phosphorylation of CREB and MAP kinases ERK1 and ERK2 (ERK1/2), the co-treatment with L-calcium channel blockers differentially prevented most of these changes. These results suggest that the stimulation of cardiac ODC by ß2 -adrenergic agents is associated with the activation of MAP kinases through the participation of L-calcium channels, and that by itself p-CREB does not appear to be sufficient for the transcriptional activation of ODC. In addition, post-translational mechanisms related with the induction of AZIN1 appear to be related to the increase of cardiac ODC activity.


Assuntos
Canais de Cálcio/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ornitina Descarboxilase/metabolismo , Adrenérgicos/farmacologia , Animais , Western Blotting , Canais de Cálcio/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Ornitina Descarboxilase/genética , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Amino Acids ; 43(5): 2153-63, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22562773

RESUMO

The role of polyamines in renal physiology is only partially understood. Moreover, most of the data on the enzymes of polyamine metabolism come from studies using whole kidneys. The aim of the present study was to analyze the mRNA abundance of the genes implicated in both the polyamine biosynthetic and catabolic pathways in different renal zones of male and female mice, by means of the quantitative reverse transcription-polymerase chain reaction. Our results indicate that there is an uneven distribution of the different mRNAs studied in the five renal zones: superficial cortex, deep cortex, outer stripe of the outer medulla (OS), inner stripe of the outer medulla (IS), and the inner medulla + papilla (IM). The biosynthetic genes, ornithine decarboxylase (ODC) and spermine synthase, were more expressed in the cortex, whereas the mRNAs of the catabolic genes spermine oxidase (SMO) and diamine oxidase were more abundant in IS and IM. The genes involved in the regulation of polyamine synthesis (AZ1, AZ2 and AZIN1) were expressed in all the renal zones, predominantly in the cortex, while AZIN2 gene was more abundant in the OS. ODC, SMO, spermidine synthase and spermidine/spermine acetyl transferase expression was higher in males than in females. In conclusion, the genes encoding for the polyamine metabolism were specifically and quantitatively distributed along the corticopapillary axis of male and female mouse kidneys, suggesting that their physiological role is essential in defined renal zones and/or nephron segments.


Assuntos
Expressão Gênica , Rim/enzimologia , Poliaminas/metabolismo , RNA Mensageiro/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Feminino , Rim/anatomia & histologia , Masculino , Camundongos , Especificidade de Órgãos , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores Sexuais , Espermidina Sintase/genética , Espermidina Sintase/metabolismo , Espermina Sintase/genética , Espermina Sintase/metabolismo , Poliamina Oxidase
8.
Amino Acids ; 42(2-3): 539-47, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21814789

RESUMO

Ornithine decarboxylase antizyme inhibitors, AZIN1 and AZIN2, are regulators and homologous proteins of ornithine decarboxylase (ODC), the rate limiting enzyme in the biosynthesis of polyamines. In this study, we have examined by means of real-time RT-PCR the relative abundance of mRNA of the three ODC paralogs in different rodent tissues, as well as in several cell lines derived from human tumors. With the exception of mouse and rat testes, ODC mRNA was the most expressed gene in all tissues examined (values higher than 60%). AZIN2 was more expressed than AZIN1 in testis, epididymis, brain, adrenal gland and lung, whereas the opposite was found in liver, kidney, heart, intestine and pancreas, as well as in all the cell lines examined. mRNA abundance of the three antizymes (AZ1, AZ2 and AZ3) that interact with ODC and antizyme inhibitors was also analyzed. AZ1 and AZ2 mRNA were ubiquitously expressed, AZ1 mRNA being more abundant than that of AZ2, although the ratio was dependent on the mouse tissue. In carcinoma-derived cells AZ1 was more expressed than AZ2, whereas in neuroblastoma-derived cells AZ2 mRNA was much more abundant than that of AZ1. AZ3 was expressed exclusively in rodent testes, where it was the most abundant of the three antizymes (~80%). This study is the first comparative-quantitative analysis on the expression of antizymes and antizyme inhibitors in different types of mammalian cells.


Assuntos
Inibidores Enzimáticos/metabolismo , Proteínas/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Proteínas/genética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
9.
Biomolecules ; 13(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671399

RESUMO

BACKGROUND: Alterations in the neural polyamine system are known to be associated with different brain pathological conditions. In addition, the regulation of enzymes involved in polyamine metabolism such as ornithine decarboxylase (ODC), antizymes (AZs), and antizyme inhibitors (AZINs) is critical during brain development. However, while most studies focus on ODC and AZs, less is known about AZIN expression and function in the brain. Thus, our aim was to analyze the expression pattern of AZIN2 during postnatal development, its brain distribution, and its possible implication in phenotypical alterations. METHODS: The expression pattern of Azin2 and other genes related to polyamine metabolism was analyzed by RT-qPCR. ß-D-galactosidase staining was used to determine the anatomical distribution of AZIN2 in a Azin2 knockout model containing the ßGeo marker. Brain polyamine content was determined by HPLC. The Rota-Rod and Pole functional tests were used to evaluate motor skills in Azin2-lacking mice. RESULTS: Our results showed that expression of genes codifying for AZs and AZINs showed a similar increasing pattern over time that coincided with a decrease in ODC activity and putrescine levels. The analysis of AZIN2 distribution demonstrated that it is strongly expressed in the cerebellum and distributed along the neuron body and dendrites. The ablation of Azin2 showed a decrease in putrescine levels and is related to reduced motor skills. CONCLUSIONS: Our study revealed that AZIN2 expression in the brain is particularly limited to the cerebellum. In addition, the ablation of Azin2 leads to a reduction in putrescine that relates to alterations in motor function, suggesting the role of AZIN2 in the functioning of dopaminergic neurons.


Assuntos
Proteínas de Transporte , Poliaminas , Camundongos , Animais , Proteínas de Transporte/metabolismo , Poliaminas/metabolismo , Putrescina , Ornitina Descarboxilase/metabolismo , Encéfalo/metabolismo , Locomoção
10.
Amino Acids ; 38(2): 603-11, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19956990

RESUMO

Polyamines are small organic polycations essential for cell proliferation and survival. Antizymes (AZs) are small proteins regulated by polyamines that inhibit polyamine biosynthesis and uptake in mammalian cells. In addition, antizyme functions are also regulated by antizyme inhibitors, homologue proteins of ornithine decarboxylase lacking enzymatic activity. There are two antizyme inhibitors (AZIN), known as AZIN1 and AZIN2, that bind to AZs and negate their effects on polyamine metabolism. Here, we review different molecular and cellular properties of the novel AZIN2 with particular emphasis on the role that this protein may have in brain and testis physiology. Whereas AZIN1 is ubiquitously found in mammalian tissues, AZIN2 expression appears to be restricted to brain and testis. In transfected cells, AZIN2 is mainly located in the endoplasmic reticulum-Golgi intermediate compartment and in the cis-Golgi network. AZIN2 is a labile protein that is degraded by the proteasome by a ubiquitin-dependent mechanism. Regarding its physiological role, spatial and temporal analyses of AZIN2 expression in the mouse testis suggest that this protein may have a role in spermiogenesis.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Carboxiliases , Feminino , Humanos , Masculino , Camundongos , Poliaminas/metabolismo , Transporte Proteico , Testículo/metabolismo
11.
J Cell Biochem ; 107(4): 732-40, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19449338

RESUMO

Ornithine decarboxylase (ODC) and the antizyme inhibitors (AZIN1 and AZIN2), regulatory proteins of polyamine levels, are antizyme-binding proteins. Although it is widely recognized that ODC is mainly a cytosolic enzyme, less is known about the subcellular distribution of AZIN1 and AZIN2. We found that these proteins, which share a high degree of homology in their amino acid sequences, presented differences in their subcellular location in transfected mammalian cells. Whereas ODC was mainly present in the cytosol, and AZIN1 was found predominantly in the nucleus, interestingly, AZIN2 was located in the ER-Golgi intermediate compartment (ERGIC) and in the cis-Golgi network, apparently not related to any known cell-sorting sequence. Our results rather suggest that the N-terminal region may be responsible for this particular location, since its deletion abrogated the incorporation of the mutated AZIN2 to the ERGIC complex and, on the other hand, the substitution of this sequence for the corresponding sequence in ODC, translocated ODC from cytosol to the ERGIC compartment. Furthermore, the coexpression of AZIN2 with any members of the antizyme family induced a shift of AZIN2 from the ERGIC to the cytosol. These findings underline the complexity of the AZs/AZINs regulatory system, supporting early evidence that relates these proteins with additional functions other than regulating polyamine homeostasis.


Assuntos
Proteínas/análise , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Núcleo Celular/química , Chlorocebus aethiops , Citoplasma/química , Retículo Endoplasmático , Inibidores Enzimáticos , Complexo de Golgi , Humanos , Camundongos , Ornitina Descarboxilase/análise , Transporte Proteico , Transfecção
12.
PLoS One ; 14(9): e0218500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509528

RESUMO

Ornithine decarboxylase (ODC) is a key enzyme in the biosynthesis of polyamines, organic cations that are implicated in many cellular processes. The enzyme is regulated at the post-translational level by an unusual system that includes antizymes (AZs) and antizyme inhibitors (AZINs). Most studies on this complex regulatory mechanism have been focused on human and rodent cells, showing that AZINs (AZIN1 and AZIN2) are homologues of ODC but devoid of enzymatic activity. Little is known about Xenopus ODC and its paralogues, in spite of the relevance of Xenopus as a model organism for biomedical research. We have used the information existing in different genomic databases to compare the functional properties of the amphibian ODC1, AZIN1 and AZIN2/ODC2, by means of transient transfection experiments of HEK293T cells. Whereas the properties of xlODC1 and xlAZIN1 were similar to those reported for their mammalian orthologues, the former catalyzing the decarboxylation of L-ornithine preferentially to that of L-lysine, xlAZIN2/xlODC2 showed important differences with respect to human and mouse AZIN2. xlAZIN2 did not behave as an antizyme inhibitor, but it rather acts as an authentic decarboxylase forming cadaverine, due to its higher affinity to L-lysine than to L-ornithine as substrate; so, in accordance with this, it should be named as lysine decarboxylase (LDC) or lysine/ornithine decarboxylase (LODC). In addition, AZ1 stimulated the degradation of xlAZIN2 by the proteasome, but the removal of the 21 amino acid C-terminal tail, with a sequence quite different to that of mouse or human ODC, made the protein resistant to degradation. Collectively, our results indicate that in Xenopus there is only one antizyme inhibitor (xlAZIN1) and two decarboxylases, xlODC1 and xlLDC, with clear preferences for L-ornithine and L-lysine, respectively.


Assuntos
Carboxiliases/genética , Ornitina Descarboxilase/genética , Poliaminas/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Carboxiliases/metabolismo , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Cinética , Camundongos , Ornitina Descarboxilase/metabolismo , RNA Mensageiro/genética
13.
Front Nutr ; 6: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923709

RESUMO

The polyamines putrescine, spermidine, and spermine are widely distributed polycationic compounds essential for cellular functions. Intracellular polyamine pools are tightly regulated by a complex regulatory mechanism involving de novo biosynthesis, catabolism, and transport across the plasma membrane. In mammals, both the production of polyamines and their uptake from the extracellular space are controlled by a set of proteins named antizymes and antizyme inhibitors. Dysregulation of polyamine levels has been implicated in a variety of human pathologies, especially cancer. Additionally, decreases in the intracellular and circulating polyamine levels during aging have been reported. The differences in the polyamine content existing among tissues are mainly due to the endogenous polyamine metabolism. In addition, a part of the tissue polyamines has its origin in the diet or their production by the intestinal microbiome. Emerging evidence has suggested that exogenous polyamines (either orally administrated or synthetized by the gut microbiota) are able to induce longevity in mice, and that spermidine supplementation exerts cardioprotective effects in animal models. Furthermore, the administration of either spermidine or spermine has been shown to be effective for improving glucose homeostasis and insulin sensitivity and reducing adiposity and hepatic fat accumulation in diet-induced obesity mouse models. The exogenous addition of agmatine, a cationic molecule produced through arginine decarboxylation by bacteria and plants, also exerts significant effects on glucose metabolism in obese models, as well as cardioprotective effects. In this review, we will discuss some aspects of polyamine metabolism and transport, how diet can affect circulating and local polyamine levels, and how the modulation of either polyamine intake or polyamine production by gut microbiota can be used for potential therapeutic purposes.

14.
Endocrinology ; 149(10): 5012-23, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18583422

RESUMO

Polyamines play an essential role in murine development, as demonstrated by both gene ablation in ornithine decarboxylase (ODC)-deficient embryos and pharmacological treatments of pregnant mice. However, the molecular and cellular mechanisms by which ODC inhibition affects embryonic development during critical periods of pregnancy are mostly unknown. Our present results demonstrate that the contragestational effect of alpha-difluoromethylornithine (DFMO), a suicide inhibitor of ODC, when given at d 7-9 of pregnancy, is associated with embryo growth arrest and marked alterations in the development of yolk sac and placenta. Blood island formation as well as the transcript levels of embryonary globins alpha-like x chain and beta-like y-chain was markedly decreased in the yolk sac. At the placental level, abnormal chorioallantoic attachment, absence of the spongiotrophoblast layer and a deficient development of the labyrinthine zone were evident. Real-time RT-PCR analysis showed that transcript levels of the steroidogenic genes steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase VI, and 17alpha-hydroxylase were markedly decreased by DFMO treatment in the developing placenta at d 9 and 10 of pregnancy. Plasma values of progesterone and androstenedione were also decreased by DFMO treatment. Transcriptomic analysis also detected changes in the expression of several genes involved in placentation and the differentiation of trophoblastic lineages. In conclusion, our results indicate that ODC inhibition at d 8 of pregnancy is related to alterations in yolk sac formation and trophoblast differentiation, affecting processes such as vasculogenesis and steroidogenesis.


Assuntos
Decídua/fisiologia , Eflornitina/farmacologia , Desenvolvimento Embrionário/fisiologia , Inibidores Enzimáticos/farmacologia , Poliaminas/metabolismo , Androstenodiona/sangue , Animais , Decídua/citologia , Decídua/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Idade Gestacional , Hematopoese/efeitos dos fármacos , Hematopoese/fisiologia , Camundongos , Camundongos Endogâmicos , Ornitina Descarboxilase/genética , Gravidez , Progesterona/sangue , Esteroides/biossíntese , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/fisiologia
15.
Med Sci (Basel) ; 6(4)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304856

RESUMO

The intracellular levels of polyamines, cationic molecules involved in a myriad of cellular functions ranging from cellular growth, differentiation and apoptosis, is precisely regulated by antizymes and antizyme inhibitors via the modulation of the polyamine biosynthetic and transport systems. Antizymes, which are mainly activated upon high polyamine levels, inhibit ornithine decarboxylase (ODC), the key enzyme of the polyamine biosynthetic route, and exert a negative control of polyamine intake. Antizyme inhibitors (AZINs), which are proteins highly homologous to ODC, selectively interact with antizymes, preventing their action on ODC and the polyamine transport system. In this review, we will update the recent advances on the structural, cellular and physiological functions of AZINs, with particular emphasis on the action of these proteins in the regulation of polyamine metabolism. In addition, we will describe emerging evidence that suggests that AZINs may also have polyamine-independent effects on cells. Finally, we will discuss how the dysregulation of AZIN activity has been implicated in certain human pathologies such as cancer, fibrosis or neurodegenerative diseases.

16.
PLoS One ; 13(12): e0209202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566531

RESUMO

The specific role of polyamines in the testis physiology is not fully understood. Antizymes (OAZs) and antizyme inhibitors (AZINs) are modulators of ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis and polyamine uptake. Although the three known OAZs are expressed in the testis, only OAZ3 is testis specific and has been proven to have an essential role in male fertility. Regarding the two existing AZINs, AZIN2 is the most abundantly expressed member in this gonad. Whereas previous studies suggested that AZIN2 might participate in mouse spermatogenesis, immunohistological analysis of human testicular sections revealed that AZIN2 is also detected in the steroidogenic Leydig cells but not in the germinal epithelium. In the present study, we found a close ontogenic similarity in the mRNA levels of OAZs and AZINs between mice and rats, but an opposite expression pattern of ODC activity. Further analysis of AZIN2 and OAZ3 in the testis of mice with different alterations in spermatogenesis and fertility, induced either genetically or pharmacologically, corroborated that both AZIN2 and OAZ3 are mainly expressed in the haploid germinal cells. Finally, by using transgenic mice with a truncated Azin2 gene fused to the bacterial lacZ gene, we studied the expression of Azin2 in testes, epididymides and spermatozoa. AZIN2 was detected in spermatids and spermatozoa, as well as in Leydig cells, and in epithelial epidydimal cells. Azin2 knock-out male mice were fertile; however, they showed marked decreases in testicular putrescine and plasma and testicular testosterone levels, and a dramatic reduction in the sperm motility. These results suggest an important role for AZIN2 in testicular cells by modulating polyamine concentrations, testosterone synthesis and sperm function. Overall, our data corroborate the relevance of polyamine regulation in testis functions, where both AZIN2 and OAZ3 play fundamental roles.


Assuntos
Proteínas de Transporte/metabolismo , Poliaminas/metabolismo , Motilidade dos Espermatozoides/fisiologia , Testículo/enzimologia , Testosterona/metabolismo , Animais , Gonadotropina Coriônica/administração & dosagem , Gonadotropina Coriônica/metabolismo , Epididimo/enzimologia , Epididimo/crescimento & desenvolvimento , Células Epiteliais/enzimologia , Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Ratos Sprague-Dawley , Espermatozoides/metabolismo , Neoplasias Testiculares/metabolismo , Testículo/crescimento & desenvolvimento
17.
Springerplus ; 5: 616, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27330882

RESUMO

The administration of l-arginine hydrochloride has been used for testing pituitary secretion in humans, and as an experimental model for induction of acute pancreatitis in rats and mice. Whereas in the first case, the administration of the amino acid is associated with hiperkalemia, in the model of acute pancreatitis no data are available on possible changes in potassium homeostasis. The present study shows that the acute administration to mice of l-arginine hydrochloride or other cationic amino acids almost duplicate plasma potassium levels. This effect was associated to a marked decrease of tissue potassium in both pancreas and liver. No changes were found in other tissues. These changes cannot be ascribed to the large load of chloride ions, since similar effects were produced when l-ornithine aspartate was administered. The changes in potassium levels were dependent on the dose. The displacement of intracellular potassium from the liver and pancreas to the extracellular compartment appears to be dependent on the entry of the cationic amino acid, since the administration of an equivalent dose of alfa-difluoromethyl ornithine HCl (DFMO), a non physiological analog of l-ornithine, which is poorly taken by the tissues in comparison with the physiological cationic amino acids, did not produce any change in potassium levels in pancreas and liver. The analyses of the expression of cationic amino acid transporters (CAT) suggest that the CAT-2 transporter may be implicated in the potassium/cationic amino acid interchange in liver and pancreas. The possible physiological or pathological relevance of these findings is discussed.

18.
Endocrinology ; 146(2): 666-74, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15514084

RESUMO

LH plays a relevant role in folliculogenesis, ovulation, and luteinization. Although ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is a target of LH in the ovary, the functional significance of ODC induction has remained elusive. Our study reveals that the blockade of the induction of ovarian ODC by means of the specific inhibitor alpha-difluoromethylornithine (DFMO) affects folliculogenesis and luteinization. In immature female mice, DFMO was found to inhibit ovarian growth, the formation of Graafian follicles, and the secretion of progesterone and estradiol. In adult cycling females, the administration of DFMO on the evening/night of proestrus markedly decreased plasma progesterone levels at diestrus, which was associated to the decrease in the expression of steroidogenic factor 1, cytochrome cholesterol side chain cleavage enzyme, and steroidogenic acute regulatory protein in the ovary and to a reduced vascularization of the corpora lutea. These effects were not reverted by the administration of gonadotropins or prolactin. ODC immunoreactivity was also stimulated by LH in theca and granulosa cells of antral follicles but not in preantral follicles. Overall, these experiments demonstrate that elevated ODC values found in the ovary of immature and adult mice play a relevant function in ovarian physiology and that ODC/polyamines must be considered as important mediators of some of the effects of LH on follicular development and luteinization.


Assuntos
Luteinização/metabolismo , Ornitina Descarboxilase/metabolismo , Folículo Ovariano/enzimologia , 3-Hidroxiesteroide Desidrogenases/genética , Fatores Etários , Animais , Aromatase/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Proteínas de Ligação a DNA/genética , Eflornitina/farmacologia , Inibidores Enzimáticos/farmacologia , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/farmacologia , Proteínas de Homeodomínio , Hormônio Luteinizante/farmacologia , Camundongos , Camundongos Endogâmicos , Inibidores da Ornitina Descarboxilase , Folículo Ovariano/crescimento & desenvolvimento , Fosfoproteínas/genética , Progesterona/sangue , RNA Mensageiro/análise , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais/fisiologia , Fator Esteroidogênico 1 , Fatores de Transcrição/genética
19.
J Inorg Biochem ; 99(10): 2074-80, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16146650

RESUMO

Polyamines are ubiquitous polycations that participate in cellular processes such as growth, differentiation and cell death. Among the different functions ascribed to these organic cations, the polyamine spermine is known to protect DNA from the damage produced by reactive oxygen species (ROS) generated by different agents including copper ions. We have found that spermine exerts opposite effects on DNA strand breakage induced by Fenton reaction depending on metal concentration. Whereas at low concentration of the transition metals, 10 microM copper or 50 microM Fe(II), 1 mM spermine exerted a protective role, at metal concentrations higher than 25 microM copper or 100 microM Fe(II), spermine stimulated DNA strand breakage. The promotion of the damage induced by spermine was independent of DNA sequence but decreased by increasing the ionic concentration of the media or by the presence of metal-chelating agents. Moreover, spermine did not increase the oxidation of 2-deoxyribose by metal/H2O2 when DNA was substituted by 2-deoxyribose as a target for damage. Our results corroborate that spermine may protect DNA and 2-deoxyribose from the damage induced by ROS but also demonstrate that under certain conditions spermine may promote DNA strand breakage. The fact that this promoting effect of spermine on ROS-induced damage was observed only in the presence of DNA suggests that this polyamine under certain conditions may facilitate the interaction of copper and iron ions with DNA leading to the formation of ROS in close proximity to DNA.


Assuntos
Cobre/toxicidade , Dano ao DNA , Ferro/toxicidade , Espermina/farmacologia , Desoxirribose/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Íons , Oxirredução , Espécies Reativas de Oxigênio
20.
J Nutr Biochem ; 14(6): 333-41, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12873715

RESUMO

We have studied the influence of dietary arginine on tissue arginine content, and arginine metabolism in CD1 mice. Dietary arginine restriction produced by feeding mice with a low arginine diet (0.06%) produced a marked decrease in arginine concentrations in the plasma, skeletal muscle and kidney of female mice (72%, 67% and 54%, respectively) while in male mice the decreases were smaller (58% in blood and 18% in the skeletal muscle). This diet abolished not only the sexual dimorphism in arginine content observed in mice fed with the diet containing 1% arginine, but also reduced renal activities of arginase and nitric oxide synthase in the female mice and ornithine decarboxylase and the decarboxylation of arginine in the male mice. Urinary putrescine excretion was dramatically reduced by arginine restriction in the male mice whereas orotic acid excretion increased about 30 fold in both sexes; urea and creatinine excretion did not change. Taken together our results indicate that dietary arginine plays a relevant role in the maintenance of the sexual dimorphism in arginine content and arginine metabolism in CD1 mice, and that this may have physiological significance because of the important effects that arginine-derived products exert on a variety of cellular processes.


Assuntos
Arginina/administração & dosagem , Arginina/metabolismo , Dieta , Caracteres Sexuais , Animais , Arginase/metabolismo , Arginina/sangue , Citrulina/metabolismo , Creatinina/urina , Feminino , Rim/química , Rim/enzimologia , Masculino , Camundongos , Músculo Esquelético/química , Óxido Nítrico Sintase/metabolismo , Ornitina Descarboxilase/metabolismo , Ornitina-Oxo-Ácido Transaminase/metabolismo , Ácido Orótico/urina , Putrescina/metabolismo , Putrescina/urina , Ureia/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA