Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nature ; 548(7669): 573-577, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28858305

RESUMO

The Palaeocene-Eocene Thermal Maximum (PETM) was a global warming event that occurred about 56 million years ago, and is commonly thought to have been driven primarily by the destabilization of carbon from surface sedimentary reservoirs such as methane hydrates. However, it remains controversial whether such reservoirs were indeed the source of the carbon that drove the warming. Resolving this issue is key to understanding the proximal cause of the warming, and to quantifying the roles of triggers versus feedbacks. Here we present boron isotope data-a proxy for seawater pH-that show that the ocean surface pH was persistently low during the PETM. We combine our pH data with a paired carbon isotope record in an Earth system model in order to reconstruct the unfolding carbon-cycle dynamics during the event. We find strong evidence for a much larger (more than 10,000 petagrams)-and, on average, isotopically heavier-carbon source than considered previously. This leads us to identify volcanism associated with the North Atlantic Igneous Province, rather than carbon from a surface reservoir, as the main driver of the PETM. This finding implies that climate-driven amplification of organic carbon feedbacks probably played only a minor part in driving the event. However, we find that enhanced burial of organic matter seems to have been important in eventually sequestering the released carbon and accelerating the recovery of the Earth system.

2.
Nature ; 533(7603): 380-4, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27111509

RESUMO

The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Clima , Boro/análise , Boro/química , Foraminíferos/química , Sedimentos Geológicos/química , História Antiga , Camada de Gelo/química , Oceano Índico , Isótopos/análise , Isótopos/química , Plâncton/química , Tanzânia , Temperatura
3.
Nature ; 580(7804): 456, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32317800

Assuntos
Clima , Efeito Estufa
4.
Proc Natl Acad Sci U S A ; 115(6): 1174-1179, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358374

RESUMO

Past greenhouse periods with elevated atmospheric CO2 were characterized by globally warmer sea-surface temperatures (SST). However, the extent to which the high latitudes warmed to a greater degree than the tropics (polar amplification) remains poorly constrained, in particular because there are only a few temperature reconstructions from the tropics. Consequently, the relationship between increased CO2, the degree of tropical warming, and the resulting latitudinal SST gradient is not well known. Here, we present coupled clumped isotope (Δ47)-Mg/Ca measurements of foraminifera from a set of globally distributed sites in the tropics and midlatitudes. Δ47 is insensitive to seawater chemistry and therefore provides a robust constraint on tropical SST. Crucially, coupling these data with Mg/Ca measurements allows the precise reconstruction of Mg/Casw throughout the Eocene, enabling the reinterpretation of all planktonic foraminifera Mg/Ca data. The combined dataset constrains the range in Eocene tropical SST to 30-36 °C (from sites in all basins). We compare these accurate tropical SST to deep-ocean temperatures, serving as a minimum constraint on high-latitude SST. This results in a robust conservative reconstruction of the early Eocene latitudinal gradient, which was reduced by at least 32 ± 10% compared with present day, demonstrating greater polar amplification than captured by most climate models.

5.
Nature ; 461(7267): 1110-3, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19749741

RESUMO

Geological and geochemical evidence indicates that the Antarctic ice sheet formed during the Eocene-Oligocene transition, 33.5-34.0 million years ago. Modelling studies suggest that such ice-sheet formation might have been triggered when atmospheric carbon dioxide levels (pCO2atm) fell below a critical threshold of approximately 750 p.p.m.v., but the timing and magnitude of pCO2atm relative to the evolution of the ice sheet has remained unclear. Here we use the boron isotope pH proxy on exceptionally well-preserved carbonate microfossils from a recently discovered geological section in Tanzania to estimate pCO2atm before, during and after the climate transition. Our data suggest that are reduction in pCO2atm occurred before the main phase of ice growth,followed by a sharp recovery to pre-transition values and then a more gradual decline. During maximum ice-sheet growth, pCO2atm was between approximately 450 and approximately 1,500 p.p.m.v., with a central estimate of approximately 760 p.p.m.v. The ice cap survived the period of pCO2atm recovery,although possibly with some reduction in its volume, implying (as models predict) a nonlinear response to climate forcing during melting. Overall, our results confirm the central role of declining pCO2atm in the development of the Antarctic ice sheet (in broad agreement with carbon cycle modelling) and help to constrain mechanisms and feedbacks associated with the Earth's biggest climate switch of the past 65 Myr.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Clima , Regiões Antárticas , Boro , Foraminíferos/química , Fósseis , História Antiga , Concentração de Íons de Hidrogênio , Camada de Gelo/química , Isótopos , Plâncton/química , Água do Mar/química , Sensibilidade e Especificidade , Tanzânia , Temperatura
6.
Nat Commun ; 14(1): 2376, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105972

RESUMO

Paleontological reconstructions of plankton community structure during warm periods of the Cenozoic (last 66 million years) reveal that deep-dwelling 'twilight zone' (200-1000 m) plankton were less abundant and diverse, and lived much closer to the surface, than in colder, more recent climates. We suggest that this is a consequence of temperature's role in controlling the rate that sinking organic matter is broken down and metabolized by bacteria, a process that occurs faster at warmer temperatures. In a warmer ocean, a smaller fraction of organic matter reaches the ocean interior, affecting food supply and dissolved oxygen availability at depth. Using an Earth system model that has been evaluated against paleo observations, we illustrate how anthropogenic warming may impact future carbon cycling and twilight zone ecology. Our findings suggest that significant changes are already underway, and without strong emissions mitigation, widespread ecological disruption in the twilight zone is likely by 2100, with effects spanning millennia thereafter.


Assuntos
Plâncton , Água do Mar , Água do Mar/química , Ciclo do Carbono , Temperatura , Oceanos e Mares
7.
Proc Biol Sci ; 279(1732): 1300-9, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21993508

RESUMO

The branching times of molecular phylogenies allow us to infer speciation and extinction dynamics even when fossils are absent. Troublingly, phylogenetic approaches usually return estimates of zero extinction, conflicting with fossil evidence. Phylogenies and fossils do agree, however, that there are often limits to diversity. Here, we present a general approach to evaluate the likelihood of a phylogeny under a model that accommodates diversity-dependence and extinction. We find, by likelihood maximization, that extinction is estimated most precisely if the rate of increase in the number of lineages in the phylogeny saturates towards the present or first decreases and then increases. We demonstrate the utility and limits of our approach by applying it to the phylogenies for two cases where a fossil record exists (Cetacea and Cenozoic macroperforate planktonic foraminifera) and to three radiations lacking fossil evidence (Dendroica, Plethodon and Heliconius). We propose that the diversity-dependence model with extinction be used as the standard model for macro-evolutionary dynamics because of its biological realism and flexibility.


Assuntos
Evolução Molecular , Fósseis , Animais , Extinção Biológica , Foraminíferos/classificação , Foraminíferos/genética , Variação Genética , Lepidópteros/classificação , Lepidópteros/genética , Modelos Genéticos , Passeriformes/classificação , Passeriformes/genética , Filogenia , Urodelos/classificação , Urodelos/genética
8.
Biol Lett ; 8(1): 139-42, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21900313

RESUMO

Birth-death models are central to much macroevolutionary theory. The fundamental parameters of these models concern durations. Different species concepts realize different species durations because they represent different ideas of what birth (speciation) and death (extinction) mean. Here, we use Cenozoic macroperforate planktonic foraminifera as a case study to ask: what are the dynamical consequences of changing the definition of birth and death? We show strong evidence for biotic constraints on diversification using evolutionary species, but less with morphospecies. Discussing reasons for this discrepancy, we emphasize that clarity of species concept leads to clarity of meaning when interpreting macroevolutionary birth-death models.


Assuntos
Evolução Biológica , Classificação/métodos , Extinção Biológica , Foraminíferos/citologia , Especiação Genética , Modelos Biológicos , Simulação por Computador , Especificidade da Espécie
10.
PLoS One ; 17(11): e0274285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417346

RESUMO

The 'Roman emperor' Sponsian is known only from an assemblage of coins allegedly found in Transylvania (Romania) in 1713. They are very unlike regular Roman coins in style and manufacture, with various enigmatic features including bungled legends and historically mixed motifs, and have long been dismissed as poorly made forgeries. Here we present non-destructive imaging and spectroscopic results that show features indicative of authenticity. Deep micro-abrasion patterns suggest extensive circulation-wear. Superficial patches of soil minerals bound by authigenic cement and overlain by oxidation products indicate a history of prolonged burial then exhumation. These observations force a re-evaluation of Sponsian as a historical personage. Combining evidence from the coins with the historical record, we suggest he was most likely an army commander in the isolated Roman Province of Dacia during the military crisis of the 260s CE, and that his crudely manufactured coins supported a functioning monetary economy that persisted locally for an appreciable period.


Assuntos
Sepultamento , Numismática , Masculino , Humanos , Cimentos Ósseos , Comércio , Materiais Dentários
12.
PLoS One ; 16(4): e0249113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33848285

RESUMO

Planktonic foraminifera are heterotrophic sexually reproducing marine protists with an exceptionally complete fossil record that provides unique insights into long-term patterns and processes of evolution. Populations often exhibit strong biases towards either right (dextral) or left (sinistral) shells. Deep-sea sediment cores spanning millions of years reveal that some species show large and often rapid fluctuations in their dominant coiling direction through time. This is useful for biostratigraphic correlation but further work is required to understand the population dynamical processes that drive these fluctuations. Here we address the case of coiling fluctuations in the planktonic foraminifer genus Pulleniatina based on new high-resolution counts from two recently recovered sediment cores from either side of the Indonesian through-flow in the tropical west Pacific and Indian Oceans (International Ocean Discovery Program Sites U1486 and U1483). We use single-specimen stable isotope analyses to show that dextral and sinistral shells from the same sediment samples can show significant differences in both carbon and oxygen isotopes, implying a degree of ecological separation between populations. In one case we detect a significant difference in size between dextral and sinistral specimens. We suggest that major fluctuations in coiling ratio are caused by cryptic populations replacing one another in competitive sweeps, a mode of evolution that is more often associated with asexual organisms than with the classical 'biological species concept'.


Assuntos
Evolução Biológica , Foraminíferos/genética , Animais , Foraminíferos/citologia , Zooplâncton/citologia , Zooplâncton/genética
13.
Science ; 371(6534): 1148-1152, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33707262

RESUMO

Theory suggests that the ocean's biological carbon pump, the process by which organic matter is produced at the surface and transferred to the deep ocean, is sensitive to temperature because temperature controls photosynthesis and respiration rates. We applied a combined data-modeling approach to investigate carbon and nutrient recycling rates across the world ocean over the past 15 million years of global cooling. We found that the efficiency of the biological carbon pump increased with ocean cooling as the result of a temperature-dependent reduction in the rate of remineralization (degradation) of sinking organic matter. Increased food delivery at depth prompted the development of new deep-water niches, triggering deep plankton evolution and the expansion of the mesopelagic "twilight zone" ecosystem.

14.
BMC Evol Biol ; 10: 175, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20540735

RESUMO

BACKGROUND: The species is a fundamental unit of biological pattern and process, but its delimitation has proven a ready source of argument and disagreement. Here, we discuss four key steps that utilize statistical thresholds to describe the morphological variability within a sample and hence assess whether there is evidence for one or multiple species. Once the initial set of biologically relevant traits on comparable individuals has been identified, there is no need for the investigator to hypothesise how specimens might be divided among groups, nor the traits on which groups might be separated. RESULTS: Principal components are obtained using robust covariance estimates and retained only if they exceed threshold amounts of explanatory power, before model-based clustering is performed on the dimension-reduced space. We apply these steps in an attempt to resolve ongoing debates among taxonomists working on the extinct Eocene planktonic foraminifera Turborotalia, providing statistical evidence for two species shortly before the lineage's extinction near the Eocene/Oligocene boundary. CONCLUSION: By estimating variance robustly (samples containing incipient species are unlikely to be scaled optimally by means and standard deviations) and identifying thresholds relevant to a particular system rather than universal standards, the steps of the framework aim to optimize the chances of delineation without imposing pre-conceived patterns onto estimates of species limits.


Assuntos
Algoritmos , Foraminíferos/classificação , Especiação Genética , Animais , Análise por Conglomerados , Foraminíferos/genética , Modelos Biológicos , Modelos Estatísticos , Análise de Componente Principal , Especificidade da Espécie
15.
Nat Commun ; 11(1): 4397, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859894

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nat Commun ; 11(1): 3456, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651391

RESUMO

Faulting and earthquakes occur extensively along the flanks of the East African Rift System, including an offshore branch in the western Indian Ocean, resulting in remobilization of sediment in the form of landslides. To date, constraints on the occurrence of submarine landslides at margin scale are lacking, leaving unanswered a link between rifting and slope instability. Here, we show the first overview of landslide deposits in the post-Eocene stratigraphy of the Tanzania margin and we present the discovery of one of the biggest landslides on Earth: the Mafia mega-slide. The emplacement of multiple landslides, including the Mafia mega-slide, during the early-mid Miocene is coeval with cratonic rifting in Tanzania, indicating that plateau uplift and rifting in East Africa triggered large and potentially tsunamigenic landslides likely through earthquake activity and enhanced sediment supply. This study is a first step to evaluate the risk associated with submarine landslides in the region.

17.
PLoS One ; 13(10): e0204625, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379910

RESUMO

The unique macroevolutionary dataset of Aze & others has been transferred onto the TimeScale Creator visualisation platform while, as much as practicable, preserving the original unrevised content of its morphospecies and lineage evolutionary trees. This is a "Corrected Version" (not a revision), which can serve as an on-going historical case example because it is now updatable with future time scales. Both macroevolutionary and biostratigraphic communities are now equipped with an enduring phylogenetic database of Cenozoic macroperforate planktonic foraminiferal morphospecies and lineages for which both graphics and content can be visualised together. Key to maintaining the currency of the trees has been specification of time scales for sources of stratigraphic ranges; these scales then locate the range dates within the calibration series. Some ranges or their sources have undergone mostly minor corrections or amendments. Links between lineage and morphospecies trees have been introduced to improve consistency and transparency in timing within the trees. Also, Aze & others' dual employment of morphospecies and lineage concepts is further elaborated here, given misunderstandings that have ensued. Features displayed on the trees include options for line styles for additional categories for range extensions or degrees of support for ancestor-descendant proposals; these have been applied to a small number of instances as an encouragement to capture more nuanced data in the future. In addition to labeling of eco- and morpho-groups on both trees, genus labels can be attached to the morphospecies tree to warn of polyphyletic morphogenera, and the lineage codes have been decoded to ease their recognition. However, it is the mouse-over pop-ups that provide the greatest opportunity to embed supporting information in the trees. They include details for stratigraphic ranges and their recalibration steps, positions relative to the standard planktonic-foraminiferal zonation, and applications as datums, as well as mutual listings between morphospecies and lineages which ease the tracing of their interrelated contents. The elaboration of the original dataset has been captured in a relational database, which can be considered a resource in itself, and, through queries and programming, serves to generate the TimeScale Creator datapacks.


Assuntos
Foraminíferos/classificação , Foraminíferos/genética , Plâncton/classificação , Plâncton/genética , Animais , Biodiversidade , Evolução Biológica , Camundongos , Filogenia
18.
PLoS One ; 11(11): e0165522, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27851751

RESUMO

Global diversity patterns are thought to result from a combination of environmental and historical factors. This study tests the set of ecological and evolutionary hypotheses proposed to explain the global variation in present-day coretop diversity in the macroperforate planktonic foraminifera, a clade with an exceptional fossil record. Within this group, marine surface sediment assemblages are thought to represent an accurate, although centennial to millennial time-averaged, representation of recent diversity patterns. Environmental variables chosen to capture ocean temperature, structure, productivity and seasonality were used to model a range of diversity measures across the world's oceans. Spatial autoregressive models showed that the same broad suite of environmental variables were important in shaping each of the four largely independent diversity measures (rarefied species richness, Simpson's evenness, functional richness and mean evolutionary age). Sea-surface temperature explains the largest portion of diversity in all four diversity measures, but not in the way predicted by the metabolic theory of ecology. Vertical structure could be linked to increased diversity through the strength of stratification, but not through the depth of the mixed layer. There is limited evidence that seasonal turnover explains diversity patterns. There is evidence for functional redundancy in the low-latitude sites. The evolutionary mechanism of deep-time stability finds mixed support whilst there is relatively little evidence for an out-of-the-tropics model. These results suggest the diversity patterns of planktonic foraminifera cannot be explained by any one environmental variable or proposed mechanism, but instead reflect multiple processes acting in concert.


Assuntos
Biodiversidade , Foraminíferos/fisiologia , Sedimentos Geológicos/microbiologia , Plâncton/fisiologia , Internacionalidade , Funções Verossimilhança , Oceanos e Mares , Filogenia , Característica Quantitativa Herdável , Especificidade da Espécie , Temperatura
19.
Philos Trans R Soc Lond B Biol Sci ; 371(1691): 20150224, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26977064

RESUMO

The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)--one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56-34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment-diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG--lower richness towards the poles--developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity--e.g. richness, evenness, functional diversity--have changed over geological time. By the Late Eocene, environment-diversity relationships were much more similar to those found today.


Assuntos
Biodiversidade , Evolução Biológica , Mudança Climática , Foraminíferos/classificação , Plâncton/classificação , Fósseis , Fatores de Tempo
20.
Philos Trans A Math Phys Eng Sci ; 371(2001): 20130099, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24043871

RESUMO

Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA