Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(8): 2203-2214, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087378

RESUMO

The role of mast cell (MC), a common myeloid-derived immune cell, in the development of oral squamous cell carcinoma (OSCC) is unclear. The aim of this study was to investigate MC infiltration in oral precancer and oral cancer. The evaluation of immune cell infiltration and its association with prognosis in OSCC used RNA sequencing and multiple public datasets. Multiplex immunofluorescence was used to explore the infiltration of MC in the microenvironment of OSCC and oral precancer and the interaction with CD8+ cells. The role of MC in OSCC progression was verified by in vivo experiments. The resting MC infiltration was mainly present in oral precancer, whereas activated MC infiltration was significantly higher in OSCC. Activated MC was associated with malignant transformation of oral precancer and poor prognosis of OSCC. In vivo studies showed that MC promoted the growth of OSCC. The infiltration of activated MC was negatively correlated with the infiltration of CD8+ T cells. The subtype of MC containing tryptase without chymase (MCT) was significantly higher in OSCC compared with oral precancer and was associated with poor survival. Furthermore, spatial distance analysis revealed a greater distance between MCT and CD8+ cells, which was also linked to poor prognosis in OSCC. Cox regression analysis showed that MCT could be a potential diagnostic and prognostic biomarker. This study provides new insights into the role of MC in the immune microenvironment of OSCC. It might enhance the immunotherapeutic efficacy of OSCC by developing targeted therapies against MC. SIGNIFICANCE: In this study, we investigated the role of mast cells (MC) in oral precancer and oral cancer and demonstrated that MCs are involved in oral cancer progression and may serve as a potential diagnostic and prognostic marker. It might improve the immunotherapeutic efficacy through developing targeted therapies against MCs.


Assuntos
Transformação Celular Neoplásica , Progressão da Doença , Mastócitos , Neoplasias Bucais , Lesões Pré-Cancerosas , Microambiente Tumoral , Mastócitos/patologia , Mastócitos/imunologia , Neoplasias Bucais/patologia , Neoplasias Bucais/imunologia , Neoplasias Bucais/mortalidade , Humanos , Microambiente Tumoral/imunologia , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/imunologia , Prognóstico , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Masculino , Triptases/metabolismo , Triptases/genética , Feminino , Quimases/metabolismo , Quimases/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia
2.
Int J Surg ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39248300

RESUMO

BACKGROUND: Loss of chromosome 9p is an important biomarker in the malignant transformation of oral leukoplakia (OLK) to head and neck squamous cell carcinoma (HNSCC), and is associated with the prognosis of HNSCC patients. However, various challenges have prevented 9p loss from being assessed in clinical practice. The objective of this study was to develop a pathomics-based artificial intelligence (AI) model for the rapid and cost-effective prediction of 9p loss (9PLP). MATERIALS AND METHODS: 333 OLK cases were retrospectively collected with hematoxylin and eosin (H&E)-stained whole slide images and genomic alteration data from multicenter cohorts to develop the genomic alteration prediction AI model. They were divided into a training dataset (n=217), a validation dataset (n=93), and an external testing dataset (n=23). The latest Transformer method and XGBoost algorithm were combined to develop the 9PLP model. The AI model was further applied and validated in two multicenter HNSCC datasets (n=42, n=365, respectively). Moreover, the combination of 9PLP with clinicopathological parameters was used to develop a nomogram model for assessing HNSCC patient prognosis. RESULTS: 9PLP could predict chromosome 9p loss rapidly and effectively using both OLK and HNSCC images, with the area under the curve achieving 0.890 and 0.825, respectively. Furthermore, the predictive model showed high accuracy in HNSCC patient prognosis assessment (the area under the curve was 0.739 for 1-year prediction, 0.705 for 3-year prediction, and 0.691 for 5-year prediction). CONCLUSION: To the best of our knowledge, this study developed the first genomic alteration prediction deep learning model in OLK and HNSCC. This novel AI model could predict 9p loss and assess patient prognosis by identifying pathomics features in H&E-stained images with good performance. In the future, the 9PLP model may potentially contribute to better clinical management of OLK and HNSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA