Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 29(11): 115603, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339574

RESUMO

Phase diagrams of carbon, and those focusing on the graphite-to-diamond transitional conditions in particular, are of great interest for fundamental and applied research. The present study introduces a number of experiments carried out to convert graphite under high-pressure conditions, showing a formation of stable phase of fullerene-type onions cross-linked by sp3-bonds in the 55-115 GPa pressure range instead of diamonds formation (even at temperature 2000-3000 K) and the already formed diamonds turn into carbon onions. Our results refute the widespread idea that diamonds can form at any pressure from 2.2 to 1000 GPa. The phase diagram built within this study allows us not only to explain the existing numerous experimental data on the formation of diamond from graphite, but also to make assumptions about the conditions of its growth in Earth's crust.

2.
Acta Crystallogr B ; 68(Pt 5): 543-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22992799

RESUMO

BNC nanotubes and nanofibers have been synthesized in the high isostatic pressure apparatus in Ar at 1923 K and 1.5 MPa in the presence of yttrium aluminium garnet. Some of the nanotubes obtained were filled with Al(2)O(3). Transmission electron microscopy (TEM) studies have shown that the nanotubes and nanofibers have a polygonal cross-section (prismatic shape), and most often they are twisted, which is due to the transversal instability of the nanotubes originating under the growth conditions, including temperature treatment. Twisting also revealed itself in the appearance of the moiré fringes during the TEM observation of some of the nanotubes and nanofibers. Analysis of these fringes has shown that the facets of these nanotubes represent the slightly misoriented hexagonal BN and/or C plates. An Al(2)O(3) filling of the nanotube makes it harder to twist when subjected to torque, which conforms to the tube deformation theory.

3.
Opt Lett ; 35(17): 2904-6, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20808364

RESUMO

The linear-to-elliptical transformation of a 400 nm femtosecond-probe pulse in the birefringent filament in argon of an 800 nm linearly polarized femtosecond-pump pulse is studied numerically and experimentally. The rotation of the probe elliptical polarization is the largest in the high-intensity filament core. With propagation, the rotated radiation diffracts outward by the pump-produced plasma. The transmission of the analyzer crossing the probe's polarization is maximum at the pump-probe angle of 45 degrees and gives equal values for each pair of angles symmetrically situated at both sides of the maximum.

4.
Sci Technol Adv Mater ; 10(1): 015004, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877267

RESUMO

The effect of an electron beam on nanoparticles of two Fe carbide catalysts inside a carbon nanofiber was investigated in a transmission electron microscope. Electron beam exposure does not result in significant changes for cementite (θ-Fe3C). However, for Hägg carbide nanoparticles (χ-Fe5C2), explosive decay is observed after exposure for 5-10 s. This produces small particles of cementite and γ-Fe, each covered with a multilayer carbon shell, and significantly modifies the carbon-fiber structure. It is considered that the decomposition of Hägg carbide is mostly due to the damage induced by high-energy electron collisions with the crystal lattice, accompanied by the heating of the particle and by mechanical stress provided by the carbon layers of the nanofiber.

5.
Nanomaterials (Basel) ; 9(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717941

RESUMO

Aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs) are promising materials for applications in various high-tech industries. Control over the processes of interfacial interaction in Al/MWCNT composites is important to achieve a high level of mechanical properties. The present study describes the effects of coating MWCNTs with titanium carbide nanoparticles on the formation of mechanical properties and the evolution of the reinforcement structure in bulk aluminum matrix nanocomposites with low concentrations of MWCNTs under conditions of solid-phase consolidation of ball-milled powder mixtures. Using high-energy ball milling and uniaxial hot pressing, two types of bulk nanocomposites based on aluminum alloy AA5049 that were reinforced with microadditions of MWCNTs and MWCNTs coated with TiC nanoparticles were successfully produced. The microstructural and mechanical properties of the Al/MWCNT composites were investigated. The results showed that, on the one hand, the TiC nanoparticles on the surface of the MWCNT hybrid reinforcement reduced the damage of reinforcement under the intense exposure of milling bodies, and on the other hand, they reduced the contact area of the MWCNTs with the matrix material (acting as a barrier interface), which also locally inhibited the reaction between the matrix and the MWCNTs.

6.
Nanoscale Res Lett ; 12(1): 561, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29019049

RESUMO

Nanodiamond in a 2-5-nm size interval (which is typical for an appearance of quantum confinement effect) show Raman spectra composed of 3 bands at 1325, 1600, and 1500 cm-1 (at the 458-nm laser excitation) which shifts to 1630 cm-1 at the 257-nm laser excitation. Contrary to sp2-bonded carbon, relative intensities of the bands do not depend on the 458- and 257-nm excitation wavelengths, and a halfwidth and the intensity of the 1600 cm-1 band does not change visibly under pressure at least up to 50 GPa. Bulk modulus of the 2-5-nm nanodiamond determined from the high-pressure study is around 560 GPa. Studied 2-5-nm nanodiamond was purified from contamination layers and dispersed in Si or NaCl.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 5): 733-737, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27698314

RESUMO

High-resolution transmission electron microscopy (HRTEM) studies of silicon after treatment in a planetary mill have been performed. It is shown that along with the initial phase of silicon, Si-I, the sample also contains some high-pressure phases: Si-III (Kasper phase) and Si-IV (lonsdaleite). We studied the orientation relationship between the particles of different phases, finding that there are, in general, two mechanisms of formation of Si-IV: (1) through the stacking faults formation; (2) through the transformation first to the Kasper phase (Si-III), and then from the Kasper phase to Si-IV. Estimations of temperature and pressure conditions in the planetary ball mill made previously are in accordance with the conditions of formation of the above-mentioned phases.

8.
Artigo em Inglês | MEDLINE | ID: mdl-24056356

RESUMO

As a result of the high-temperature and high-pressure treatment of graphite we obtained a powder containing diamond and lonsdaleite. The structure and properties of the powder were studied by transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). It was found that the synthesized material contains not only diamond nanoparticles, but also some relatively large (up to several nanometers) fragments of lonsdaleite. 4H and 6H polytypes were found in some of the diamond particles. Incoherent twin boundaries were observed in the diamond particle containing fragments of lonsdaleite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA