Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34551974

RESUMO

Vaccination is an essential public health measure for infectious disease prevention. The exposure of the immune system to vaccine formulations with the appropriate kinetics is critical for inducing protective immunity. In this work, faceted microneedle arrays were designed and fabricated utilizing a three-dimensional (3D)-printing technique called continuous liquid interface production (CLIP). The faceted microneedle design resulted in increased surface area as compared with the smooth square pyramidal design, ultimately leading to enhanced surface coating of model vaccine components (ovalbumin and CpG). Utilizing fluorescent tags and live-animal imaging, we evaluated in vivo cargo retention and bioavailability in mice as a function of route of delivery. Compared with subcutaneous bolus injection of the soluble components, microneedle transdermal delivery not only resulted in enhanced cargo retention in the skin but also improved immune cell activation in the draining lymph nodes. Furthermore, the microneedle vaccine induced a potent humoral immune response, with higher total IgG (Immunoglobulin G) and a more balanced IgG1/IgG2a repertoire and achieved dose sparing. Furthermore, it elicited T cell responses as characterized by functional cytotoxic CD8+ T cells and CD4+ T cells secreting Th1 (T helper type 1)-cytokines. Taken together, CLIP 3D-printed microneedles coated with vaccine components provide a useful platform for a noninvasive, self-applicable vaccination.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Impressão Tridimensional/instrumentação , Vacinação/métodos , Vacinas/administração & dosagem , Administração Cutânea , Animais , Sistemas de Liberação de Medicamentos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
2.
Nano Lett ; 17(5): 2879-2886, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28287740

RESUMO

As the enhanced permeation and retention (EPR) effect continues to be a controversial topic in nanomedicine, we sought to examine EPR as a function of nanoparticle size, tumor model, and tumor location, while also evaluating tumors for EPR mediating factors such as microvessel density, vascular permeability, lymphatics, stromal content, and tumor-associated immune cells. Tumor accumulation was evaluated for 55 × 60, 80 × 180, and 80 × 320 nm PRINT particles in four subcutaneous flank tumor models (SKOV3 human ovarian, 344SQ murine nonsmall cell lung, A549 human nonsmall cell lung, and A431 human epidermoid cancer). Each tumor model revealed specific particle accumulation trends with evident particle size dependence. Immuno-histochemistry staining revealed differences in tumor microvessel densities that correlated with overall tumor accumulation. Immunofluorescence images displayed size-mediated tumor penetration with signal from the larger particles concentrated close to the blood vessels, while signal from the smaller particle was observed throughout the tissue. Differences were also observed for the 55 × 60 nm particle tumor penetration across flank tumor models as a function of stromal content. The 55 × 60 nm particles were further evaluated in three orthotopic, metastatic tumor models (344SQ, A549, and SKOV3), revealing preferential accumulation in primary tumors and metastases over healthy tissue. Moreover, we observed higher tumor accumulation in the orthotopic lung cancer models than in the flank lung cancer models, whereas tumor accumulation was constant for both orthotopic and flank ovarian cancer models, further demonstrating the variability in the EPR effect as a function of tumor model and location.


Assuntos
Nanopartículas/química , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Microambiente Celular/fisiologia , Corantes Fluorescentes/química , Xenoenxertos , Humanos , Camundongos , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neoplasias/metabolismo , Tamanho da Partícula , Permeabilidade
3.
Nano Lett ; 17(1): 242-248, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27966988

RESUMO

Novel treatment strategies, including nanomedicine, are needed for improving management of triple-negative breast cancer. Patients with triple-negative breast cancer, when considered as a group, have a worse outcome after chemotherapy than patients with breast cancers of other subtypes, a finding that reflects the intrinsically adverse prognosis associated with the disease. The aim of this study was to improve the efficacy of docetaxel by incorporation into a novel nanoparticle platform for the treatment of taxane-resistant triple-negative breast cancer. Rod-shaped nanoparticles encapsulating docetaxel were fabricated using an imprint lithography based technique referred to as Particle Replication in Nonwetting Templates (PRINT). These rod-shaped PLGA-docetaxel nanoparticles were tested in the C3(1)-T-antigen (C3Tag) genetically engineered mouse model (GEMM) of breast cancer that represents the basal-like subtype of triple-negative breast cancer and is resistant to therapeutics from the taxane family. This GEMM recapitulates the genetics of the human disease and is reflective of patient outcome and, therefore, better represents the clinical impact of new therapeutics. Pharmacokinetic analysis showed that delivery of these PLGA-docetaxel nanoparticles increased docetaxel circulation time and provided similar docetaxel exposure to tumor compared to the clinical formulation of docetaxel, Taxotere. These PLGA-docetaxel nanoparticles improved tumor growth inhibition and significantly increased median survival time. This study demonstrates the potential of nanotechnology to improve the therapeutic index of chemotherapies and rescue therapeutic efficacy to treat nonresponsive cancers.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Taxoides/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Células A549 , Animais , Antineoplásicos/farmacocinética , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Sobrevivência Celular , Docetaxel , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos Nus , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície , Taxoides/química , Taxoides/metabolismo , Taxoides/farmacocinética , Neoplasias de Mama Triplo Negativas/genética
4.
Plant Cell ; 26(2): 678-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24585837

RESUMO

Previous analysis of the Lotus histidine kinase1 (Lhk1) cytokinin receptor gene has shown that it is required and also sufficient for nodule formation in Lotus japonicus. The L. japonicus mutant carrying the loss-of-function lhk1-1 allele is hyperinfected by its symbiotic partner, Mesorhizobium loti, in the initial absence of nodule organogenesis. At a later time point following bacterial infection, lhk1-1 develops a limited number of nodules, suggesting the presence of an Lhk1-independent mechanism. We have tested a hypothesis that other cytokinin receptors function in at least a partially redundant manner with LHK1 to mediate nodule organogenesis in L. japonicus. We show here that L. japonicus contains a small family of four cytokinin receptor genes, which all respond to M. loti infection. We show that within the root cortex, LHK1 performs an essential role but also works partially redundantly with LHK1A and LHK3 to mediate cell divisions for nodule primordium formation. The LHK1 receptor is also presumed to partake in mediating a feedback mechanism that negatively regulates bacterial infections at the root epidermis. Interestingly, the Arabidopsis thaliana AHK4 receptor gene can functionally replace Lhk1 in mediating nodule organogenesis, indicating that the ability to perform this developmental process is not determined by unique, legume-specific properties of LHK1.


Assuntos
Citocininas/metabolismo , Lotus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Citocininas/farmacologia , Escherichia coli , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lotus/efeitos dos fármacos , Lotus/genética , Lotus/microbiologia , Mesorhizobium , Modelos Biológicos , Dados de Sequência Molecular , Família Multigênica , Mutação/genética , Organogênese/efeitos dos fármacos , Organogênese/genética , Filogenia , Proteínas de Plantas/química , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/química , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/microbiologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos
5.
Mol Pharm ; 13(10): 3381-3394, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27551741

RESUMO

Educating our immune system via vaccination is an attractive approach to combat infectious diseases. Eliciting antigen specific cytotoxic T cells (CTLs), CD8+ effector T cells, is essential in controlling intracellular infectious diseases such as influenza (Flu), tuberculosis (TB), hepatitis, and HIV/AIDS, as well as tumors. However, vaccination utilizing subunit peptides to elicit a potent CD8+ T cell response with antigenic peptides is typically ineffective due to poor immunogenicity. Here we have engineered a reduction sensitive nanoparticle (NP) based subunit vaccine for intracellular delivery of an antigenic peptide and immunostimulatory adjuvant. We have co-conjugated an antigenic peptide (ovalbumin-derived CTL epitope [OVA257-264: SIINFEKL]) and an immunostimulatory adjuvant (CpG ODNs, TLR9 agonist) to PEG hydrogel NPs via a reduction sensitive linker. Bone-marrow derived dendritic cells (BMDCs) treated with the SIINFEKL conjugated NPs efficiently cross-presented the antigenic peptide via MHC-I surface receptor and induced proliferation of OT-I T cells. CpG ODN-conjugated NPs induced maturation of BMDCs as evidenced by the overexpression of CD80 and CD40 costimulatory receptors. Moreover, codelivery of NP conjugated SIINFEKL and CpG ODN significantly increased the frequency of IFN-γ producing CD8+ effector T cells in mice (∼6-fold improvement over soluble antigen and adjuvant). Furthermore, the NP subunit vaccine-induced effector T cells were able to kill up to 90% of the adoptively transferred antigenic peptide-loaded target cell. These results demonstrate that the reduction sensitive NP subunit vaccine elicits a potent CTL response and provide compelling evidence that this approach could be utilized to engineer particulate vaccines to deliver tumor or pathogen associated antigenic peptides to harness the immune system to fight against cancer and infectious diseases.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos/administração & dosagem , Hidrogéis/química , Linfócitos T Citotóxicos/metabolismo , Animais , Antígenos/imunologia , Células da Medula Óssea/citologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/metabolismo , Proliferação de Células/fisiologia , Cromatografia Líquida de Alta Pressão , Células Dendríticas/metabolismo , Difusão Dinâmica da Luz , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Nanopartículas/química , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/imunologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Polietilenoglicóis/química , Linfócitos T Citotóxicos/imunologia , Termogravimetria
6.
Nanomedicine ; 12(4): 1053-1062, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26772430

RESUMO

The biological activity of nanoparticle-directed therapies critically depends on cellular targeting. We examined the subtumoral fate of Particle Replication in Non-Wetting Templates (PRINT) nanoparticles in a xenografted melanoma tumor model by multi-color flow cytometry and in vivo confocal tumor imaging. These approaches were compared with the typical method of whole-organ quantification by radiolabeling. In contrast to radioactivity based detection which demonstrated a linear dose-dependent accumulation in the organ, flow cytometry revealed that particle association with cancer cells became dose-independent with increased particle doses and that the majority of the nanoparticles in the tumor were associated with cancer cells despite a low fractional association. In vivo imaging demonstrated an inverse relationship between tumor cell association and other immune cells, likely macrophages. Finally, variation in particle size nonuniformly affected subtumoral association. This study demonstrates the importance of subtumoral targeting when assessing nanoparticle activity within tumors. FROM THE CLINICAL EDITOR: Particle Replication in Non-Wetting Templates (PRINT) technology allows the production of nanoparticles with uniform size. The authors in the study utilized PRINT-produced nanoparticles to investigate specific tumor uptake by multi-color flow cytometry and in vivo confocal tumor imaging. This approach allowed further in-depth correlation between nanoparticle properties and tumor cells and should improve future design.


Assuntos
Citometria de Fluxo , Melanoma/diagnóstico por imagem , Nanomedicina , Nanopartículas/efeitos adversos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Melanoma/patologia , Nanopartículas/administração & dosagem , Tamanho da Partícula , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nano Lett ; 15(10): 6371-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26389971

RESUMO

In this Letter, we varied targeting ligand density of an EGFR binding affibody on the surface of two different hydrogel PRINT nanoparticles (80 nm × 320 and 55 nm × 60 nm) and monitored effects on target-cell association, off-target phagocytic uptake, biodistribution, and tumor accumulation. Interestingly, variations in ligand density only significantly altered in vitro internalization rates for the 80 nm × 320 nm particle. However, in vivo, both particle sizes experienced significant changes in biodistribution and pharmacokinetics as a function of ligand density. Overall, nanoparticle size and passive accumulation were the dominant factors eliciting tumor sequestration.


Assuntos
Hidrogéis , Nanopartículas , Endocitose , Ligantes , Microscopia Eletrônica de Varredura , Distribuição Tecidual
8.
Cancer Treat Res ; 166: 275-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25895873

RESUMO

Nanoparticle properties such as size, shape, deformability, and surface chemistry all play a role in nanomedicine drug delivery in cancer. While many studies address the behavior of particle systems in a biological setting, revealing how these properties work together presents unique challenges on the nanoscale. "Calibration-quality" control over such properties is needed to draw adequate conclusions that are independent of parameter variability. Furthermore, active targeting and drug loading strategies introduce even greater complexities via their potential to alter particle pharmacokinetics. Ultimately, the investigation and optimization of particle properties should be carried out in the appropriate preclinical tumor model. In doing so, translational efficacy improves as clinical tumor properties increase. Looking forward, the field of nanomedicine will continue to have significant clinical impacts as the capabilities of nanoparticulate drug delivery are further enhanced.


Assuntos
Antineoplásicos/administração & dosagem , Nanoconjugados/química , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Calibragem , Sistemas de Liberação de Medicamentos , Humanos , Nanoconjugados/uso terapêutico
9.
Plant Cell Physiol ; 54(1): 107-18, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161854

RESUMO

The physiological role of K(+)-dependent and K(+)-independent asparaginases in plants remains unclear, and the contribution from individual isoforms during development is poorly understood. We have used reverse genetics to assess the phenotypes produced by the deficiency of K(+)-dependent NSE1 asparaginase in the model legume Lotus japonicus. For this purpose, four different mutants were identified by TILLING and characterized, two of which affected the structure and function of the asparaginase molecule and caused asparagine accumulation. Plant growth and total seed weight of mature mutant seeds as well as the level of both legumin and convicilin seed storage proteins were affected in the mutants. The mutants isolated in the present work are the first of their type in legumes and have enabled us to demonstrate the importance of asparagine and K(+)-dependent NSE1 asparaginase for nitrogen remobilization and seed production in L. japonicus plants.


Assuntos
Asparaginase/metabolismo , Lotus/enzimologia , Lotus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Asparaginase/química , Asparaginase/genética , Asparagina/metabolismo , Mutação , Nitrogênio/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
10.
Plant Cell ; 22(7): 2509-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20675572

RESUMO

Legumes form symbioses with arbuscular mycorrhiza (AM) fungi and nitrogen fixing root nodule bacteria. Intracellular root infection by either endosymbiont is controlled by the activation of the calcium and calmodulin-dependent kinase (CCaMK), a central regulatory component of the plant's common symbiosis signaling network. We performed a microscopy screen for Lotus japonicus mutants defective in AM development and isolated a mutant, nena, that aborted fungal infection in the rhizodermis. NENA encodes a WD40 repeat protein related to the nucleoporins Sec13 and Seh1. Localization of NENA to the nuclear rim and yeast two-hybrid experiments indicated a role for NENA in a conserved subcomplex of the nuclear pore scaffold. Although nena mutants were able to form pink nodules in symbiosis with Mesorhizobium loti, root hair infection was not observed. Moreover, Nod factor induction of the symbiotic genes NIN, SbtM4, and SbtS, as well as perinuclear calcium spiking, were impaired. Detailed phenotypic analyses of nena mutants revealed a rhizobial infection mode that overcame the lack of rhizodermal responsiveness and carried the hallmarks of crack entry, including a requirement for ethylene. CCaMK-dependent processes were only abolished in the rhizodermis but not in the cortex of nena mutants. These data support the concept of tissue-specific components for the activation of CCaMK.


Assuntos
Lotus/metabolismo , Micorrizas/patogenicidade , Proteínas de Plantas/fisiologia , Rhizobium/patogenicidade , Simbiose , Clonagem Molecular , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
11.
Nano Lett ; 12(10): 5304-10, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22920324

RESUMO

In this account, we varied PEGylation density on the surface of hydrogel PRINT nanoparticles and systematically observed the effects on protein adsorption, macrophage uptake, and circulation time. Interestingly, the density of PEGylation necessary to promote a long-circulating particle was dramatically less than what has been previously reported. Overall, our methodology provides a rapid screening technique to predict particle behavior in vivo and our results deliver further insight to what PEG density is necessary to facilitate long-circulation.


Assuntos
Nanopartículas/química , Polietilenoglicóis/química , Adsorção , Animais , Feminino , Hidrogéis , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Nanopartículas/administração & dosagem , Nanotecnologia , Fagocitose , Polietilenoglicóis/farmacocinética , Ligação Proteica , Propriedades de Superfície , Distribuição Tecidual
12.
Acc Chem Res ; 44(10): 990-8, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21809808

RESUMO

Nanotheranostics represents the next generation of medicine, fusing nanotechnology, therapeutics, and diagnostics. By integrating therapeutic and imaging agents into one nanoparticle, this new treatment strategy has the potential not only to detect and diagnose disease but also to treat and monitor the therapeutic response. This capability could have a profound impact in both the research setting as well as in a clinical setting. In the research setting, such a capability will allow research scientists to rapidly assess the performance of new therapeutics in an effort to iterate their designs for increased therapeutic index and efficacy. In the clinical setting, theranostics offers the ability to determine whether patients enrolling in clinical trials are responding, or are expected to respond, to a given therapy based on the hypothesis associated with the biological mechanisms being tested. If not, patients can be more quickly removed from the clinical trial and shifted to other therapeutic options. To be effective, these theranostic agents must be highly site specific. Optimally, they will carry relevant cargo, demonstrate controlled release of that cargo, and include imaging probes with a high signal-to-noise ratio. There are many biological barriers in the human body that challenge the efficacy of nanoparticle delivery vehicles. These barriers include, but are not limited to, the walls of blood vessels, the physical entrapment of particles in organs, and the removal of particles by phagocytic cells. The rapid clearance of circulating particles during systemic delivery is a major challenge; current research seeks to define key design parameters that govern the performance of nanocarriers, such as size, surface chemistry, elasticity, and shape. The effect of particle size and surface chemistry on in vivo biodistribution of nanocarriers has been extensively studied, and general guidelines have been established. Recently it has been documented that shape and elasticity can have a profound effect on the behavior of delivery vehicles. Thus, having the ability to independently control shape, size, matrix, surface chemistry, and modulus is crucial for designing successful delivery agents. In this Account, we describe the use of particle replication in nonwetting templates (PRINT) to fabricate shape- and size-specific microparticles and nanoparticles. A particular strength of the PRINT method is that it affords precise control over shape, size, surface chemistry, and modulus. We have demonstrated the loading of PRINT particles with chemotherapeutics, magnetic resonance contrast agents, and fluorophores. The surface properties of the PRINT particles can be easily modified with "stealth" poly(ethylene glycol) chains to increase blood circulation time, with targeting moieties for targeted delivery or with radiolabels for nuclear imaging. These particles have tremendous potential for applications in nanomedicine and diagnostics.


Assuntos
Nanomedicina/métodos , Nanopartículas/química , Tamanho da Partícula , Animais , Meios de Contraste/química , Meios de Contraste/metabolismo , Meios de Contraste/uso terapêutico , Humanos , Nanopartículas/uso terapêutico
13.
Langmuir ; 28(23): 8773-81, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22612428

RESUMO

We describe the fabrication of filamentous hydrogel nanoparticles using a unique soft lithography based particle molding process referred to as PRINT (particle replication in nonwetting templates). The nanoparticles possess a constant width of 80 nm, and we varied their lengths ranging from 180 to 5000 nm. In addition to varying the aspect ratio of the particles, the deformability of the particles was tuned by varying the cross-link density within the particle matrix. Size characteristics such as hydrodynamic diameter and persistence length of the particles were analyzed using dynamic light scattering and electron microscopy techniques, respectively, while particle deformability was assessed by atomic force microscopy. Additionally, the ability of the particles to pass through membranes containing 0.2 µm pores was assessed by means of a simple filtration technique, and particle recovery was determined using fluorescence spectroscopy. The results show that particle recovery is mostly independent of aspect ratio at all cross-linker concentrations utilized, with the exception of 96 wt % PEG diacrylate 80 × 5000 nm particles, which showed the lowest percent recovery.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Polietilenoglicóis/química , Hidrogéis , Luz , Microscopia de Força Atômica , Microscopia Eletrônica , Nanopartículas/ultraestrutura , Nanoporos , Tamanho da Partícula , Espalhamento de Radiação , Espectrometria de Fluorescência
14.
JACS Au ; 2(11): 2426-2445, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465529

RESUMO

The intradermal (ID) space has been actively explored as a means for drug delivery and diagnostics that is minimally invasive. Microneedles or microneedle patches or microarray patches (MAPs) are comprised of a series of micrometer-sized projections that can painlessly puncture the skin and access the epidermal/dermal layer. MAPs have failed to reach their full potential because many of these platforms rely on dated lithographic manufacturing processes or molding processes that are not easily scalable and hinder innovative designs of MAP geometries that can be achieved. The DeSimone Laboratory has recently developed a high-resolution continuous liquid interface production (CLIP) 3D printing technology. This 3D printer uses light and oxygen to enable a continuous, noncontact polymerization dead zone at the build surface, allowing for rapid production of MAPs with precise and tunable geometries. Using this tool, we are now able to produce new classes of lattice MAPs (L-MAPs) and dynamic MAPs (D-MAPs) that can deliver both solid state and liquid cargos and are also capable of sampling interstitial fluid. Herein, we will explore how additive manufacturing can revolutionize MAP development and open new doors for minimally invasive drug delivery and diagnostic platforms.

15.
Plant Physiol ; 154(2): 643-55, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20699404

RESUMO

The metabolism of starch is of central importance for many aspects of plant growth and development. Information on leaf starch metabolism other than in Arabidopsis (Arabidopsis thaliana) is scarce. Furthermore, its importance in several agronomically important traits exemplified by legumes remains to be investigated. To address this issue, we have provided detailed information on the genes involved in starch metabolism in Lotus japonicus and have characterized a comprehensive collection of forward and TILLING (for Targeting Induced Local Lesions IN Genomes) reverse genetics mutants affecting five enzymes of starch synthesis and two enzymes of starch degradation. The mutants provide new insights into the structure-function relationships of ADP-glucose pyrophosphorylase and glucan, water dikinase1 in particular. Analyses of the mutant phenotypes indicate that the pathways of leaf starch metabolism in L. japonicus and Arabidopsis are largely conserved. However, the importance of these pathways for plant growth and development differs substantially between the two species. Whereas essentially starchless Arabidopsis plants lacking plastidial phosphoglucomutase grow slowly relative to wild-type plants, the equivalent mutant of L. japonicus grows normally even in a 12-h photoperiod. In contrast, the loss of GLUCAN, WATER DIKINASE1, required for starch degradation, has a far greater effect on plant growth and fertility in L. japonicus than in Arabidopsis. Moreover, we have also identified several mutants likely to be affected in new components or regulators of the pathways of starch metabolism. This suite of mutants provides a substantial new resource for further investigations of the partitioning of carbon and its importance for symbiotic nitrogen fixation, legume seed development, and perenniality and vegetative regrowth.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Lotus/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Lotus/enzimologia , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Análise de Sequência de DNA , Relação Estrutura-Atividade
16.
Chemistry ; 17(23): 6296-302, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21563218

RESUMO

Encapsulating drugs within hollow nanotubes offers several advantages, including protection from degradation, the possibility of targeting desired locations, and drug release only under specific conditions. Template synthesis utilizes porous membranes prepared from alumina, polycarbonate, or other materials that can be dissolved under specific conditions. The method allows for great control over the lengths and diameters of nanotubes; moreover, tubes can be constructed from a wide variety of tube materials including proteins, DNA, silica, carbon, and chitosan. A number of capping strategies have been developed to seal payloads within nanotubes. Combining these advances with the ability to target and internalize nanotubes into living cells will allow these assemblies to move into the next phase of development, in vivo experiments.


Assuntos
Óxido de Alumínio/química , Sistemas de Liberação de Medicamentos/métodos , Nanotubos/química , Dióxido de Silício/química , Nanotecnologia
17.
Nature ; 433(7025): 527-31, 2005 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-15616514

RESUMO

The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that redirect root cell development. Here we present two highly homologous genes from Lotus japonicus, CASTOR and POLLUX, that are indispensable for microbial admission into plant cells and act upstream of intracellular calcium spiking, one of the earliest plant responses to symbiotic stimulation. Surprisingly, both twin proteins are localized in the plastids of root cells, indicating a previously unrecognized role of this ancient endosymbiont in controlling intracellular symbioses that evolved more recently.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Lotus/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plastídeos/metabolismo , Simbiose/fisiologia , Alelos , Sequência de Aminoácidos , Sinalização do Cálcio , DNA Complementar/genética , Genes de Plantas/genética , Lotus/citologia , Lotus/genética , Lotus/microbiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plastídeos/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Proc Natl Acad Sci U S A ; 105(51): 20540-5, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19074278

RESUMO

The initiation of intracellular infection of legume roots by symbiotic rhizobia bacteria and arbuscular mycorrhiza (AM) fungi is preceded by the induction of calcium signatures in and around the nucleus of root epidermal cells. Although a calcium and calmodulin-dependent kinase (CCaMK) is a key mediator of symbiotic root responses, the decoding of the calcium signal and the molecular events downstream are only poorly understood. Here, we characterize Lotus japonicus cyclops mutants on which microbial infection was severely inhibited. In contrast, nodule organogenesis was initiated in response to rhizobia, but arrested prematurely. This arrest was overcome when a deregulated CCaMK mutant version was introduced into cyclops mutants, conferring the development of full-sized, spontaneous nodules. Because cyclops mutants block symbiotic infection but are competent for nodule development, they reveal a bifurcation of signal transduction downstream of CCaMK. We identified CYCLOPS by positional cloning. CYCLOPS carries a functional nuclear localization signal and a predicted coiled-coil domain. We observed colocalization and physical interaction between CCaMK and CYCLOPS in plant and yeast cell nuclei in the absence of symbiotic stimulation. Importantly, CYCLOPS is a phosphorylation substrate of CCaMK in vitro. Cyclops mutants of rice were impaired in AM, and rice CYCLOPS could restore symbiosis in Lotus cyclops mutants, indicating a functional conservation across angiosperms. Our results suggest that CYCLOPS forms an ancient, preassembled signal transduction complex with CCaMK that is specifically required for infection, whereas organogenesis likely requires additional yet-to-be identified CCaMK interactors or substrates.


Assuntos
Fabaceae/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Plantas/fisiologia , Simbiose/genética , Sinalização do Cálcio , Peptídeos e Proteínas de Sinalização Intracelular/classificação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lotus/microbiologia , Lotus/fisiologia , Dados de Sequência Molecular , Mutação , Sinais de Localização Nuclear , Oryza/química , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Rhizobiaceae/fisiologia , Transdução de Sinais
19.
Plant Physiol ; 151(3): 1281-91, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19641028

RESUMO

We have established tools for forward and reverse genetic analysis of the legume Lotus (Lotus japonicus). A structured population of M2 progeny of 4,904 ethyl methanesulfonate-mutagenized M1 embryos is available for single nucleotide polymorphism mutation detection, using a TILLING (for Targeting Induced Local Lesions IN Genomes) protocol. Scanning subsets of this population, we identified a mutation load of one per 502 kb of amplified fragment. Moreover, we observed a 1:10 ratio between homozygous and heterozygous mutations in the M2 progeny. This reveals a clear difference in germline genetics between Lotus and Arabidopsis (Arabidopsis thaliana). In addition, we assembled M2 siblings with obvious phenotypes in overall development, starch accumulation, or nitrogen-fixing root nodule symbiosis in three thematic subpopulations. By screening the nodulation-defective population of M2 individuals for mutations in a set of 12 genes known to be essential for nodule development, we identified large allelic series for each gene, generating a unique data set that combines genotypic and phenotypic information facilitating structure-function studies. This analysis revealed a significant bias for replacements of glycine (Gly) residues in functionally defective alleles, which may be explained by the exceptional structural features of Gly. Gly allows the peptide chain to adopt conformations that are no longer possible after amino acid replacement. This previously unrecognized vulnerability of proteins at Gly residues could be used for the improvement of algorithms that are designed to predict the deleterious nature of single nucleotide polymorphism mutations. Our results demonstrate the power, as well as the limitations, of ethyl methanesulfonate mutagenesis for forward and reverse genetic studies. (Original mutant phenotypes can be accessed at http://data.jic.bbsrc.ac.uk/cgi-bin/lotusjaponicus Access to the Lotus TILLING facility can be obtained through http://www.lotusjaponicus.org or http://revgenuk.jic.ac.uk).


Assuntos
Metanossulfonato de Etila/farmacologia , Lotus/genética , Mutagênese , Nodulação/genética , Simbiose/genética , Alelos , Arabidopsis/genética , DNA de Plantas/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Dados de Sequência Molecular , Mutação , Fenótipo
20.
ACS Nano ; 14(6): 7200-7215, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32463690

RESUMO

CpG oligodeoxynucleotides are potent toll-like receptor (TLR) 9 agonists and have shown promise as anticancer agents in preclinical studies and clinical trials. Binding of CpG to TLR9 initiates a cascade of innate and adaptive immune responses, beginning with activation of dendritic cells and resulting in a range of secondary effects that include the secretion of pro-inflammatory cytokines, activation of natural killer cells, and expansion of T cell populations. Recent literature suggests that local delivery of CpG in tumors results in superior antitumor effects as compared to systemic delivery. In this study, we utilized PRINT (particle replication in nonwetting templates) nanoparticles as a vehicle to deliver CpG into murine lungs through orotracheal instillations. In two murine orthotopic metastasis models of non-small-cell lung cancer-344SQ (lung adenocarcinoma) and KAL-LN2E1 (lung squamous carcinoma), local delivery of PRINT-CpG into the lungs effectively promoted substantial tumor regression and also limited systemic toxicities associated with soluble CpG. Furthermore, cured mice were completely resistant to tumor rechallenge. Additionally, nanodelivery showed extended retention of CpG within the lungs as well as prolonged elevation of antitumor cytokines in the lungs, but no elevated levels of proinflammatory cytokines in the serum. These results demonstrate that PRINT-CpG is a potent nanoplatform for local treatment of lung cancer that has collateral therapeutic effects on systemic disease and an encouraging toxicity profile and may have the potential to treat lung metastasis of other cancer types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Animais , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos , Receptor Toll-Like 9
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA