Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Bacteriol ; 204(2): e0049421, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34871031

RESUMO

Acinetobacter baumannii is a common nosocomial pathogen that utilizes numerous mechanisms to aid its survival in both the environment and the host. Coordination of such mechanisms requires an intricate regulatory network. We report here that A. baumannii can directly regulate several stress-related pathways via the two-component regulatory system BfmRS. Similar to previous studies, results from transcriptomic analysis showed that mutation of the BfmR response regulator causes dysregulation of genes required for the oxidative stress response, the osmotic stress response, the misfolded protein/heat shock response, Csu pilus/fimbria production, and capsular polysaccharide biosynthesis. We also found that the BfmRS system is involved in controlling siderophore biosynthesis and transport, and type IV pili production. We provide evidence that BfmR binds to various stress-related promoter regions and show that BfmR alone can directly activate transcription of some stress-related genes. Additionally, we show that the BfmS sensor kinase acts as a BfmR phosphatase to negatively regulate BfmR activity. This work highlights the importance of the BfmRS system in promoting survival of A. baumannii. IMPORTANCE Acinetobacter baumannii is a nosocomial pathogen that has extremely high rates of multidrug resistance. This organism's ability to endure stressful conditions is a key part of its ability to spread in the hospital environment and cause infections. Unlike other members of the gammaproteobacteria, A. baumannii does not encode a homolog of the RpoS sigma factor to coordinate its stress response. Here, we demonstrate that the BfmRS two-component system directly controls the expression of multiple stress resistance genes. Our findings suggest that BfmRS is central to a unique scheme of general stress response regulation by A. baumannii.


Assuntos
Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Estresse Fisiológico/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Mutação , Regiões Promotoras Genéticas , Virulência/genética
2.
Infect Immun ; 88(12)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32989034

RESUMO

Acinetobacter baumannii is an opportunistic and frequently multidrug-resistant Gram-negative bacterial pathogen that primarily infects critically ill individuals. Indirect transmission from patient to patient in hospitals can drive infections, supported by this organism's abilities to persist on dry surfaces and rapidly colonize susceptible individuals. To investigate how A. baumannii survives on surfaces, we cultured A. baumannii in liquid media for several days and then analyzed isolates that lost the ability to survive drying. One of these isolates carried a mutation that affected the gene encoding the carbon storage regulator CsrA. As we began to examine the role of CsrA in A. baumannii, we observed that the growth of ΔcsrA mutant strains was inhibited in the presence of amino acids. The ΔcsrA mutant strains had a reduced ability to survive drying and to form biofilms but an improved ability to tolerate increased osmolarity compared with the wild type. We also examined the importance of CsrA for A. baumannii virulence. The ΔcsrA mutant strains had a greatly reduced ability to kill Galleria mellonella larvae, could not replicate in G. mellonella hemolymph, and also had a growth defect in human serum. Together, these results show that CsrA is essential for the growth of A. baumannii on host-derived substrates and is involved in desiccation tolerance, implying that CsrA controls key functions involved in the transmission of A. baumannii in hospitals.


Assuntos
Infecções por Acinetobacter/sangue , Acinetobacter baumannii/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Larva/microbiologia , Mariposas/microbiologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/patogenicidade , Aminoácidos/farmacologia , Animais , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Dessecação , Genótipo , Humanos , Mariposas/crescimento & desenvolvimento , Pressão Osmótica/fisiologia , Fenótipo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Virulência/genética
3.
Mol Microbiol ; 104(1): 78-91, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28010047

RESUMO

The ubiquitous bacterium Pseudomonas aeruginosa is an opportunistic pathogen that can cause serious infections in immunocompromised individuals. P. aeruginosa virulence is controlled partly by intercellular communication, and the transcription factor PqsR is a necessary component in the P. aeruginosa cell-to-cell signaling network. PqsR acts as the receptor for the Pseudomonas quinolone signal, and it controls the production of 2-alkyl-4-quinolone molecules which are important for pathogenicity. Previous studies showed that the expression of pqsR is positively controlled by the quorum-sensing regulator LasR, but it was unclear how LasR is able to induce pqsR transcription. In this report, we further investigated the control of pqsR, and discovered two separate promoter sites that contribute to pqsR expression. LasR-mediated activation occurs at the distal promoter site, but this activation can be antagonized by the regulator CysB. The proximal promoter site also contributes to pqsR transcription, but initiation at this site is inhibited by a negative regulatory sequence element, and potentially by the H-NS family members MvaT and MvaU. We propose a model where positive and negative regulatory influences at each promoter site are integrated to modify pqsR expression. This arrangement could allow for information from both environmental signals and cell-to-cell communication to influence PqsR levels.


Assuntos
Pseudomonas aeruginosa/genética , Quinolonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/genética , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Virulência
4.
Mol Microbiol ; 96(3): 670-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25662317

RESUMO

Pseudomonas aeruginosa can sense and respond to a myriad of environmental signals and utilizes a system of small molecules to communicate through intercellular signaling. The small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas Quinolone Signal [PQS]) is one of these signals and its synthesis is important for virulence. Previously, we identified an RpiR-type transcriptional regulator, QapR, that positively affects PQS production by repressing the qapR operon. An in-frame deletion of this regulator caused P. aeruginosa to produce a greatly reduced concentration of PQS. Here, we report that QapR translation is linked to the downstream gene PA5507. We found that introduction of a premature stop codon within qapR eliminates transcriptional autorepression of the qapR operon as expected but has no effect on PQS concentration. This was investigated with a series of lacZ reporter fusions which showed that translation of QapR must terminate at, or close to, the native qapR stop codon in order for translation of PA5507 to occur. Also, it was shown that truncation of the 5' end of the qapR transcript permitted PA5507 translation without translation of QapR. Our findings led us to conclude that PA5507 transcription and translation are both tightly controlled by QapR and this control is important for PQS homeostasis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Fatores de Transcrição/metabolismo , Fusão Gênica Artificial , Análise Mutacional de DNA , Genes Reporter , Biossíntese de Proteínas , beta-Galactosidase/análise
5.
J Bacteriol ; 197(12): 1988-2002, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25845844

RESUMO

UNLABELLED: Pseudomonas aeruginosa is a Gram-negative bacterium that is ubiquitous in the environment, and it is an opportunistic pathogen that can infect a variety of hosts, including humans. During the process of infection, P. aeruginosa coordinates the expression of numerous virulence factors through the production of multiple cell-to-cell signaling molecules. The production of these signaling molecules is linked through a regulatory network, with the signal N-(3-oxododecanoyl) homoserine lactone and its receptor LasR controlling the induction of a second acyl-homoserine lactone signal and the Pseudomonas quinolone signal (PQS). LasR-mediated control of PQS occurs partly by activating the transcription of pqsR, a gene that encodes the PQS receptor and is necessary for PQS production. We show that LasR interacts with a single binding site in the pqsR promoter region and that it does not influence the transcription of the divergently transcribed gene, nadA. Using DNA affinity chromatography, we identified additional proteins that interact with the pqsR-nadA intergenic region. These include the H-NS family members MvaT and MvaU, and CysB, a transcriptional regulator that controls sulfur uptake and cysteine biosynthesis. We show that CysB interacts with the pqsR promoter and that CysB represses pqsR transcription and PQS production. Additionally, we provide evidence that CysB can interfere with the activation of pqsR transcription by LasR. However, as seen with other CysB-regulated genes, pqsR expression was not differentially regulated in response to cysteine levels. These findings demonstrate a novel role for CysB in influencing cell-to-cell signal production by P. aeruginosa. IMPORTANCE: The production of PQS and other 4-hydroxy-2-alkylquinolone (HAQs) compounds is a key component of the P. aeruginosa cell-to-cell signaling network, impacts multiple physiological functions, and is required for virulence. PqsR directly regulates the genes necessary for HAQ production, but little is known about the regulation of pqsR. We identified CysB as a novel regulator of pqsR and PQS production, but, unlike other CysB-controlled genes, it does not appear to regulate pqsR in response to cysteine. This implies that CysB functions as both a cysteine-responsive and cysteine-unresponsive regulator in P. aeruginosa.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Transcrição Gênica/fisiologia , Proteínas de Bactérias/genética , Sítios de Ligação , Cisteína/metabolismo , DNA Bacteriano/genética , DNA Intergênico , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/genética , Transativadores/genética , Transativadores/metabolismo
6.
J Bacteriol ; 196(13): 2413-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24748618

RESUMO

Pseudomonas aeruginosa is a common nosocomial pathogen that relies on three cell-to-cell signals to regulate multiple virulence factors. The Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone) is one of these signals, and it is known to be important for P. aeruginosa pathogenesis. PQS is synthesized in a multistep reaction that condenses anthranilate and a fatty acid. In P. aeruginosa, anthranilate is produced via the kynurenine pathway and two separate anthranilate synthases, TrpEG and PhnAB, the latter of which is important for PQS synthesis. Others have previously shown that a P. aeruginosa tryptophan auxotroph could grow on tryptophan-depleted medium with a frequency of 10(-5) to 10(-6). These revertants produced more pyocyanin and had increased levels of phnA transcript. In this study, we constructed similar tryptophan auxotroph revertants and found that the reversion resulted from a synonymous G-to-A nucleotide mutation within pqsC. This change resulted in increased pyocyanin and decreased PQS, along with an increase in the level of the pqsD, pqsE, and phnAB transcripts. Reporter fusion and reverse transcriptase PCR studies indicated that a novel transcript containing pqsD, pqsE, and phnAB occurs in these revertants, and quantitative real-time PCR experiments suggested that the same transcript appears in the wild-type strain under nutrient-limiting conditions. These results imply that the PQS biosynthetic operon can produce an internal transcript that increases anthranilate production and greatly elevates the expression of the PQS signal response protein PqsE. This suggests a novel mechanism to ensure the production of both anthranilate and PQS-controlled virulence factors.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Triptofano/metabolismo , Ácido Corísmico/química , Ácido Corísmico/metabolismo , Estrutura Molecular , Mutação , Reação em Cadeia da Polimerase , Triptofano/química , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
7.
J Bacteriol ; 195(15): 3433-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23708133

RESUMO

Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that can cause disease in varied sites within the human body and is a significant source of morbidity and mortality in those afflicted with cystic fibrosis. P. aeruginosa is able to coordinate group behaviors, such as virulence factor production, through the process of cell-to-cell signaling. There are three intercellular signaling systems employed by P. aeruginosa, and one of these systems utilizes the small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). PQS is required for virulence in multiple infection models and has been found in the lungs of cystic fibrosis patients colonized by P. aeruginosa. In this study, we have identified an RpiR family transcriptional regulator, QapR, which is an autoregulatory repressor. We found that mutation of qapR caused overexpression of the qapR operon. We characterized the qapR operon to show that it contains genes qapR, PA5507, PA5508, and PA5509 and that QapR directly controls the transcription of these genes in a negative manner. We also show that derepression of this operon greatly reduces PQS concentration in P. aeruginosa. Our results suggest that qapR affects PQS concentration by repressing an enzymatic pathway that acts on PQS or a PQS precursor to lower the PQS concentration. We believe that this operon comprises a novel mechanism to regulate PQS concentration in P. aeruginosa.


Assuntos
Regulação Bacteriana da Expressão Gênica , Óperon , Pseudomonas aeruginosa/genética , Quinolonas/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transcrição Gênica
8.
J Biochem ; 170(6): 787-800, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34585233

RESUMO

Acinetobacter baumannii is an insidious emerging nosocomial pathogen that has developed resistance to all available antimicrobials, including the last resort antibiotic, colistin. Colistin resistance often occurs due to mutations in the PmrAB two-component regulatory system. To better understand the regulatory mechanisms contributing to colistin resistance, we have biochemically characterized the A. baumannii PmrA response regulator. Initial DNA-binding analysis shows that A. baumannii PmrA bound to the Klebsiella pneumoniae PmrA box motif. This prompted analysis of the putative A. baumannii PmrAB regulon that indicated that the A. baumannii PmrA consensus box is 5'-HTTAAD N5 HTTAAD. Additionally, we provide the first structural information for the A. baumannii PmrA N-terminal domain through X-ray crystallography and we present a full-length model using molecular modelling. From these studies, we were able to infer the effects of two critical PmrA mutations, PmrA::I13M and PmrA::P102R, both of which confer increased colistin resistance. Based on these data, we suggest structural and dynamic reasons for how these mutations can affect PmrA function and hence encourage resistive traits. Understanding these mechanisms will aid in the development of new targeted antimicrobial therapies. Graphical Abstract.


Assuntos
Acinetobacter baumannii/química , Proteínas de Bactérias/química , Colistina , DNA Bacteriano/química , Farmacorresistência Bacteriana , Mutação , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Domínios Proteicos
9.
J Bacteriol ; 193(23): 6567-75, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965577

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa can utilize a variety of carbon sources and produces many secondary metabolites to help survive harsh environments. P. aeruginosa is part of a small group of bacteria that use the kynurenine pathway to catabolize tryptophan. Through the kynurenine pathway, tryptophan is broken down into anthranilate, which is further degraded into tricarboxylic acid cycle intermediates or utilized to make numerous aromatic compounds, including the Pseudomonas quinolone signal (PQS). We have previously shown that the kynurenine pathway is a critical source of anthranilate for PQS synthesis and that the kynurenine pathway genes (kynA and kynBU) are upregulated in the presence of kynurenine. A putative Lrp/AsnC-type transcriptional regulator (gene PA2082, here called kynR), is divergently transcribed from the kynBU operon and is highly conserved in gram-negative bacteria that harbor the kynurenine pathway. We show that a mutation in kynR renders P. aeruginosa unable to utilize L-tryptophan as a sole carbon source and decreases PQS production. In addition, we found that the increase of kynA and kynB transcriptional activity in response to kynurenine was completely abolished in a kynR mutant, further indicating that KynR mediates the kynurenine-dependent expression of the kynurenine pathway genes. Finally, we found that purified KynR specifically bound the kynA promoter in the presence of kynurenine and bound the kynB promoter in the absence or presence of kynurenine. Taken together, our data show that KynR directly regulates the kynurenine pathway genes.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Cinurenina/metabolismo , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Óperon , Pseudomonas aeruginosa/genética , Fatores de Transcrição/genética , Triptofano/metabolismo
10.
Microbiol Resour Announc ; 10(10)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707317

RESUMO

Here, we report a complete genome sequence for Acinetobacter baumannii strain ATCC 17961, with plasmid sequences, and a high-quality (>98% complete) build for A. baumannii strain AB09-003. These genome sequences were generated by combining short-read Illumina and long-read Oxford Nanopore MinION sequencing data using the Unicycler hybrid assembly pipeline.

11.
Biochemistry ; 48(36): 8644-55, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19694421

RESUMO

Pseudomonas quinolone signal (PQS), 2-heptyl-3-hydroxy-4-quinolone, is an intercellular alkyl quinolone signaling molecule produced by the opportunistic pathogen Pseudomonas aeruginosa. Alkyl quinolone signaling is an atypical system that, in P. aeruginosa, controls the expression of numerous virulence factors. PQS is synthesized from the tryptophan pathway intermediate, anthranilate, which is derived either from the kynurenine pathway or from an alkyl quinolone specific anthranilate synthase encoded by phnAB. Anthranilate is converted to PQS by the enzymes encoded by the pqsABCDE operon and pqsH. PqsA forms an activated anthraniloyl-CoA thioester that shuttles anthranilate to the PqsD active site where it is transferred to Cys112 of PqsD. In the only biochemically characterized reaction, a condensation then occurs between anthraniloyl-PqsD and malonyl-CoA or malonyl-ACP, a second PqsD substrate, forming 2,4-dihydroxyquinoline (DHQ). The role PqsD plays in the biosynthesis of other alkyl quinolones, such as PQS, is unclear, though it has been reported to be required for their production. No evidence exists that DHQ is a PQS precursor, however. Here we present a structural and biophysical characterization of PqsD that includes several crystal structures of the enzyme, including that of the PqsD-anthranilate covalent intermediate and the inactive Cys112Ala active site mutant in complex with anthranilate. The structure reveals that PqsD is structurally similar to the FabH and chalcone synthase families of fatty acid and polyketide synthases. The crystallographic asymmetric unit contains a PqsD dimer. The PqsD monomer is composed of two nearly identical approximately 170-residue alphabetaalphabetaalpha domains. The structures show anthranilate-liganded Cys112 is positioned deep in the protein interior at the bottom of an approximately 15 A long channel while a second anthraniloyl-CoA molecule is waiting in the cleft leading to the protein surface. Cys112, His257, and Asn287 form the FabH-like catalytic triad of PqsD. The C112A mutant is inactive, although it still reversibly binds anthraniloyl-CoA. The covalent complex between anthranilate and Cys112 clearly illuminates the orientation of key elements of the PqsD catalytic machinery and represents a snapshot of a key point in the catalytic cycle.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Proteínas de Bactérias/química , Ácidos Graxos/biossíntese , Pseudomonas aeruginosa/enzimologia , Quinolonas/química , Quinolonas/metabolismo , ortoaminobenzoatos/química , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , Ácidos Graxos/química , Dados de Sequência Molecular , Especificidade por Substrato
12.
Plasmid ; 62(1): 16-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19248807

RESUMO

Many bacteria utilize acyl-homoserine lactones as cell to cell signals that can regulate the expression of numerous genes. Structural differences in acyl-homoserine lactones produced by different bacteria, such as acyl side chain length and the presence or absence of an oxy group, make many of the commonly used detection bioassays impractical for broad range detection. Here we present a simple, broad range acyl-homoserine lactone detection bioassay that can be used to detect a wide range of these chemical signals. A plasmid (pEAL01) was constructed and transformed into Pseudomonas aeruginosa strain QSC105 to allow for detection of a broad range of acyl-homoserine lactones through induction of a lasB'-lacZ transcriptional fusion. Monitoring beta-galactosidase activity from this bioassay showed that P. aeruginosa strain QSC105 (pEAL01) could detect the presence of eight acyl-homoserine lactones tested at physiological concentrations. This novel strain could also detect acyl-homoserine lactones from the extracts of four different bacteria that produce different acyl-homoserine lactones signals. These data indicate that strain QSC105 (pEAL01) can be used to detect a wide variety of acyl-homoserine lactones by a simple beta-galactosidase assay and this bioassay could be a useful and inexpensive tool to quickly identify the presence of these signal molecules.


Assuntos
Acil-Butirolactonas/análise , Bioensaio/métodos , Plasmídeos/genética , Acil-Butirolactonas/química , Pseudomonas aeruginosa/enzimologia , beta-Galactosidase/metabolismo
13.
J Bacteriol ; 190(21): 7043-51, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18776012

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute and chronic infections in immunocompromised individuals. This gram-negative bacterium produces a battery of virulence factors that allow it to infect and survive in many different hostile environments. The control of many of these virulence factors falls under the influence of one of three P. aeruginosa cell-to-cell signaling systems. The focus of this study, the quinolone signaling system, functions through the Pseudomonas quinolone signal (PQS), previously identified as 2-heptyl-3-hydroxy-4-quinolone. This signal binds to and activates the LysR-type transcriptional regulator PqsR (also known as MvfR), which in turn induces the expression of the pqsABCDE operon. The first four genes of this operon are required for PQS synthesis, but the fifth gene, pqsE, is not. The function of the pqsE gene is not known, but it is required for the production of multiple PQS-controlled virulence factors and for virulence in multiple models of infection. In this report, we show that PqsE can activate PQS-controlled genes in the absence of PqsR and PQS. Our data also suggest that the regulatory activity of PqsE requires RhlR and indicate that a pqsE mutant can be complemented for pyocyanin production by a large excess of exogenous N-butyryl homoserine lactone (C4-HSL). Finally, we show that PqsE enhances the ability of Escherichia coli expressing RhlR to respond to C4-HSL. Overall, our data lead us to conclude that PqsE functions as a regulator that is independent of PqsR and PQS but dependent on the rhl quorum-sensing system.


Assuntos
Proteínas de Bactérias/fisiologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glicolipídeos/metabolismo , Mutação , Óperon/genética , Elastase Pancreática/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Quinolonas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
14.
J Bacteriol ; 190(4): 1247-55, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18083812

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen which relies on several intercellular signaling systems for optimum population density-dependent regulation of virulence genes. The Pseudomonas quinolone signal (PQS) is a 3-hydroxy-4-quinolone with a 2-alkyl substitution which is synthesized by the condensation of anthranilic acid with a 3-keto-fatty acid. The pqsABCDE operon has been identified as being necessary for PQS production, and the pqsA gene encodes a predicted protein with homology to acyl coenzyme A (acyl-CoA) ligases. In order to elucidate the first step of the 4-quinolone synthesis pathway in P. aeruginosa, we have characterized the function of the pqsA gene product. Extracts prepared from Escherichia coli expressing PqsA were shown to catalyze the formation of anthraniloyl-CoA from anthranilate, ATP, and CoA. The PqsA protein was purified as a recombinant His-tagged polypeptide, and this protein was shown to have anthranilate-CoA ligase activity. The enzyme was active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. Inhibition of PQS formation in vivo was observed for the chloro- and fluoroanthranilate derivatives, as well as for several analogs which were not PqsA enzymatic substrates. These results indicate that the PqsA protein is responsible for priming anthranilate for entry into the PQS biosynthetic pathway and that this enzyme may serve as a useful in vitro indicator for potential agents to disrupt quinolone signaling in P. aeruginosa.


Assuntos
Proteínas de Bactérias/metabolismo , Coenzima A Ligases/metabolismo , Pseudomonas aeruginosa/enzimologia , ortoaminobenzoatos/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cromatografia em Gel , Cromatografia em Camada Fina , Coenzima A/metabolismo , Coenzima A Ligases/química , Coenzima A Ligases/genética , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Cinética , Dados de Sequência Molecular , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Mol Plant Microbe Interact ; 21(9): 1184-92, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18700823

RESUMO

Many bacteria use quorum sensing (QS) as an intercellular signaling mechanism to regulate gene expression in local populations. Plant and algal hosts, in turn, secrete compounds that mimic bacterial QS signals, allowing these hosts to manipulate QS-regulated gene expression in bacteria. Lumichrome, a derivative of the vitamin riboflavin, was purified and chemically identified from culture filtrates of the alga Chlamydomonas as a QS signal-mimic compound capable of stimulating the Pseudomonas aeruginosa LasR QS receptor. LasR normally recognizes the N-acyl homoserine lactone (AHL) signal, N-3-oxo-dodecanoyl homoserine lactone. Authentic lumichrome and riboflavin stimulated the LasR receptor in bioassays and lumichrome activated LasR in gel shift experiments. Amino acid substitutions in LasR residues required for AHL binding altered responses to both AHLs and lumichrome or riboflavin. These results and docking studies indicate that the AHL binding pocket of LasR recognizes both AHLs and the structurally dissimilar lumichrome or riboflavin. Bacteria, plants, and algae commonly secrete riboflavin or lumichrome, raising the possibility that these compounds could serve as either QS signals or as interkingdom signal mimics capable of manipulating QS in bacteria with a LasR-like receptor.


Assuntos
Proteínas de Bactérias/fisiologia , Flavinas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Riboflavina/farmacologia , Transativadores/fisiologia , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Chlamydomonas/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Flavinas/química , Flavinas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Percepção de Quorum/fisiologia , Riboflavina/química , Riboflavina/metabolismo , Transativadores/metabolismo , Complexo Vitamínico B/química , Complexo Vitamínico B/metabolismo , Complexo Vitamínico B/farmacologia
16.
PLoS One ; 13(10): e0205638, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308034

RESUMO

For the opportunistic pathogen Acinetobacter baumannii, desiccation tolerance is thought to contribute significantly to the persistence of these bacteria in the healthcare environment. We investigated the ability of A. baumannii to survive rapid drying, and found that some strains exhibited a profoundly desiccation-resistant phenotype, characterized by the ability of a large proportion of cells to survive on a dry surface for an extended period of time. However, this phenotype was only displayed during the stationary phase of growth. Most interestingly, we found that drying resistance could be lost after extended cultivation in liquid medium. Genome sequencing of isolates that became drying-sensitive identified mutations in bfmR, which encodes a two-component response regulator that is important for A. baumannii virulence. Additionally, BfmR was necessary for the expression of stress-related proteins during stationary phase, and one of these, KatE, was important for long-term drying survival. These results suggested that BfmR may control stress responses, and we demonstrated that the ΔbfmR mutant was more sensitive to hydrogen peroxide, nutrient starvation, and increased osmolarity. We also found that cross-protection against drying could be stimulated by either starvation, which required BfmR, or increased osmolarity. These results imply that BfmR plays a role in controlling stress responses in A. baumannii which help protect cells during desiccation, and they provide a regulatory link between this organism's ability to persist in the environment and pathogenicity.


Assuntos
Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Estresse Fisiológico/fisiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Técnicas de Cultura de Células , Desidratação/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio , Mutação , Concentração Osmolar , Fenótipo , Virulência/fisiologia
17.
Nat Commun ; 9(1): 4436, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361690

RESUMO

Chronic bacterial infections on medical devices, including catheter-associated urinary tract infections (CAUTI), are associated with bacterial biofilm communities that are refractory to antibiotic therapy and resistant to host immunity. Previously, we have shown that Pseudomonas aeruginosa can cause CAUTI by forming a device-associated biofilm that is independent of known biofilm exopolysaccharides. Here, we show by RNA-seq that host urine alters the transcriptome of P. aeruginosa by suppressing quorum sensing regulated genes. P. aeruginosa produces acyl homoserine lactones (AHLs) in the presence of urea, but cannot perceive AHLs. Repression of quorum sensing by urine implies that quorum sensing should be dispensable during infection of the urinary tract. Indeed, mutants defective in quorum sensing are able to colonize similarly to wild-type in a murine model of CAUTI. Quorum sensing-regulated processes in clinical isolates are also inhibited by urea. These data show that urea in urine is a natural anti-quorum sensing mechanism in mammals.


Assuntos
Infecções Relacionadas a Cateter/microbiologia , Interações Hospedeiro-Patógeno , Percepção de Quorum , Infecções Urinárias/microbiologia , Acil-Butirolactonas/farmacologia , Animais , Infecções Relacionadas a Cateter/patologia , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos , Fenótipo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Análise de Sequência de RNA , Ureia/farmacologia , Infecções Urinárias/patologia
18.
PLoS One ; 12(12): e0189331, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29220387

RESUMO

Pseudomonas aeruginosa is a ubiquitous, Gram-negative opportunistic pathogen that can cause disease in various sites within the human body. This bacterium is a major source of nosocomial infections that are often difficult to treat due to high intrinsic antibiotic resistance and coordinated virulence factor production. P. aeruginosa utilizes three cell-to-cell signaling systems to regulate numerous genes in response to cell density. One of these systems utilizes the small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]) as a signal that acts as a co-inducer for the transcriptional regulator PqsR. Quinolone signaling is required for virulence in multiple infection models, and PQS is produced during human infections, making this system an attractive target for potential drug development. In this study we have examined the role of a TetR-type transcriptional regulator, PsrA, in the regulation of PQS production by P. aeruginosa. Previous studies showed that PsrA regulates genes of the fatty acid ß-oxidation pathway, including PA0506, which encodes a FadE homolog. In this report, we show that deletion of psrA resulted in a large decrease in PQS production and that co-deletion of PA0506 allowed PQS production to be restored to a wild type level. We also found that PQS production could be restored to the psrA mutant by the addition of oleic or octanoic acid. Taken together, our data suggest that psrA positively affects PQS production by repressing the transcription of PA0506, which leads to a decrease in the conversion of acyl-CoA compounds to enoyl-CoA compounds, thereby allowing some octanoyl-CoA to escape the ß-oxidation pathway and serve as a PQS precursor.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ácidos Graxos/metabolismo , Oxirredução , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
ACS Chem Biol ; 11(11): 3061-3067, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27658001

RESUMO

The Gram-negative bacterial pathogen Pseudomonas aeruginosa uses three interconnected intercellular signaling systems regulated by the transcription factors LasR, RhlR, and MvfR (PqsR), which mediate bacterial cell-cell communication via small-molecule natural products and control the production of a variety of virulence factors. The MvfR system is activated by and controls the biosynthesis of the quinolone quorum sensing factors HHQ and PQS. A key step in the biosynthesis of these quinolones is catalyzed by the anthranilyl-CoA synthetase PqsA. To develop inhibitors of PqsA as novel potential antivirulence antibiotics, we report herein the design and synthesis of sulfonyladeonsine-based mimics of the anthranilyl-AMP reaction intermediate that is bound tightly by PqsA. Biochemical, microbiological, and pharmacological studies identified two potent PqsA inhibitors, anthranilyl-AMS (1) and anthranilyl-AMSN (2), that decreased HHQ and PQS production in P. aeruginosa strain PA14. However, these compounds did not inhibit production of the virulence factor pyocyanin. Moreover, they exhibited limited bacterial penetration in compound accumulation studies. This work provides the most potent PqsA inhibitors reported to date and sets the stage for future efforts to develop analogues with improved cellular activity to investigate further the complex relationships between quinolone biosynthesis and virulence factor production in P. aeruginosa and the therapeutic potential of targeting PqsA.


Assuntos
Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Quinolonas/metabolismo , Bibliotecas de Moléculas Pequenas , Inibidores Enzimáticos/química , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo
20.
FEMS Microbiol Lett ; 230(1): 27-34, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14734162

RESUMO

The opportunistic human pathogen Pseudomonas aeruginosa regulates the production of numerous virulence factors via the action of two separate but coordinated quorum sensing systems, las and rhl. These systems control the transcription of genes in response to population density through the intercellular signals N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) and N-(butanoyl)-L-homoserine lactone (C(4)-HSL). A third P. aeruginosa signal, 2-heptyl-3-hydroxy-4-quinolone [Pseudomonas quinolone signal (PQS)], also plays a significant role in the transcription of multiple P. aeruginosa virulence genes. PQS is intertwined in the P. aeruginosa quorum sensing hierarchy with its production and bioactivity requiring the las and rhl quorum sensing systems, respectively. This report presents a preliminary transcriptional analysis of pqsA, the first gene of the recently discovered PQS biosynthetic gene cluster. We show that pqsA transcription required pqsR, a transcriptional activator protein encoded within the PQS biosynthetic gene cluster. It was also found that the transcription of pqsA and subsequent production of PQS was induced by the las quorum sensing system and repressed by the rhl quorum sensing system. In addition, PQS production was dependent on the ratio of 3-oxo-C(12)-HSL to C(4)-HSL, suggesting a regulatory balance between quorum sensing systems. These data are an important early step toward understanding the regulation of PQS synthesis and the role of PQS in P. aeruginosa intercellular signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/crescimento & desenvolvimento , Quinolonas/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Meios de Cultura , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transativadores , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA