Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 11(10): e1005574, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26485514

RESUMO

Ciliopathies are Mendelian disorders caused by dysfunction of cilia, ubiquitous organelles involved in fluid propulsion (motile cilia) or signal transduction (primary cilia). Retinal dystrophy is a common phenotypic characteristic of ciliopathies since photoreceptor outer segments are specialized primary cilia. These ciliary structures heavily rely on intracellular minus-end directed transport of cargo, mediated at least in part by the cytoplasmic dynein 1 motor complex, for their formation, maintenance and function. Ninein-like protein (NINL) is known to associate with this motor complex and is an important interaction partner of the ciliopathy-associated proteins lebercilin, USH2A and CC2D2A. Here, we scrutinize the function of NINL with combined proteomic and zebrafish in vivo approaches. We identify Double Zinc Ribbon and Ankyrin Repeat domains 1 (DZANK1) as a novel interaction partner of NINL and show that loss of Ninl, Dzank1 or both synergistically leads to dysmorphic photoreceptor outer segments, accumulation of trans-Golgi-derived vesicles and mislocalization of Rhodopsin and Ush2a in zebrafish. In addition, retrograde melanosome transport is severely impaired in zebrafish lacking Ninl or Dzank1. We further demonstrate that NINL and DZANK1 are essential for intracellular dynein-based transport by associating with complementary subunits of the cytoplasmic dynein 1 motor complex, thus shedding light on the structure and stoichiometry of this important motor complex. Altogether, our results support a model in which the NINL-DZANK1 protein module is involved in the proper assembly and folding of the cytoplasmic dynein 1 motor complex in photoreceptor cells, a process essential for outer segment formation and function.


Assuntos
Proteínas de Transporte/genética , Dineínas/genética , Larva/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Células Fotorreceptoras de Vertebrados , Retina/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Animais , Transporte Biológico/genética , Cílios/genética , Células HEK293 , Humanos , Larva/crescimento & desenvolvimento , Neurogênese/genética , Proteômica , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
2.
Am J Hum Genet ; 95(2): 131-42, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25018096

RESUMO

Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas do Olho/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Sequência de Aminoácidos , Animais , Corpos Basais , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Exoma/genética , Proteínas do Olho/genética , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Dados de Sequência Molecular , Morfolinos/genética , Mutação de Sentido Incorreto , Países Baixos , Cílio Conector dos Fotorreceptores/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Análise de Sequência de DNA , Turquia , Transtornos da Visão/genética , Peixe-Zebra
3.
Am J Hum Genet ; 93(1): 110-7, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23746546

RESUMO

The majority of the genetic causes of autosomal-recessive (ar) cone-rod dystrophy (CRD) are currently unknown. A combined approach of homozygosity mapping and exome sequencing revealed a homozygous nonsense mutation (c.565C>T [p.Glu189*]) in RAB28 in a German family with three siblings with arCRD. Another homozygous nonsense mutation (c.409C>T [p.Arg137*]) was identified in a family of Moroccan Jewish descent with two siblings affected by arCRD. All five affected individuals presented with hyperpigmentation in the macula, progressive loss of the visual acuity, atrophy of the retinal pigment epithelium, and severely reduced cone and rod responses on the electroretinogram. RAB28 encodes a member of the Rab subfamily of the RAS-related small GTPases. Alternative RNA splicing yields three predicted protein isoforms with alternative C-termini, which are all truncated by the nonsense mutations identified in the arCRD families in this report. Opposed to other Rab GTPases that are generally geranylgeranylated, RAB28 is predicted to be farnesylated. Staining of rat retina showed localization of RAB28 to the basal body and the ciliary rootlet of the photoreceptors. Analogous to the function of other RAB family members, RAB28 might be involved in ciliary transport in photoreceptor cells. This study reveals a crucial role for RAB28 in photoreceptor function and suggests that mutations in other Rab proteins may also be associated with retinal dystrophies.


Assuntos
Genes Recessivos , Retinose Pigmentar/genética , Proteínas rab de Ligação ao GTP/genética , Adolescente , Adulto , Processamento Alternativo , Animais , Criança , Mapeamento Cromossômico , Cílios/metabolismo , Cílios/patologia , Códon sem Sentido/genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Homozigoto , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Linhagem , Cílio Conector dos Fotorreceptores/metabolismo , Cílio Conector dos Fotorreceptores/patologia , Prenilação de Proteína , Transporte Proteico , Ratos , Retina/enzimologia , Retina/patologia , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/enzimologia , Retinose Pigmentar/patologia , Acuidade Visual , Proteínas rab de Ligação ao GTP/metabolismo
4.
Nat Genet ; 39(7): 882-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558407

RESUMO

Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-Løken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doenças Cerebelares/genética , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Oftalmopatias/genética , Nefropatias/genética , Proteínas/genética , Proteínas/metabolismo , Adulto , Animais , Linhagem Celular , Proteínas do Citoesqueleto , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Ratos , Síndrome
5.
Hum Mol Genet ; 22(5): 852-66, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23175442

RESUMO

Euchromatin histone methyltransferase 1 (EHMT1) is a highly conserved protein that catalyzes mono- and dimethylation of histone H3 lysine 9, thereby epigenetically regulating transcription. Kleefstra syndrome (KS), is caused by haploinsufficiency of the EHMT1 gene, and is an example of an emerging group of intellectual disability (ID) disorders caused by genes encoding epigenetic regulators of neuronal gene activity. Little is known about the mechanisms underlying this disorder, prompting us to study the Euchromatin histone methyltransferase 1 heterozygous knockout (Ehmt1(+/-)) mice as a model for KS. In agreement with the cognitive disturbances observed in patients with KS, we detected deficits in fear extinction learning and both novel and spatial object recognition in Ehmt1(+/-) mice. These learning and memory deficits were associated with a significant reduction in dendritic arborization and the number of mature spines in hippocampal CA1 pyramidal neurons of Ehmt1(+/-) mice. In-depth analysis of the electrophysiological properties of CA3-CA1 synapses revealed no differences in basal synaptic transmission or theta-burst induced long-term potentiation (LTP). However, paired-pulse facilitation (PPF) was significantly increased in Ehmt1(+/-) neurons, pointing to a potential deficiency in presynaptic neurotransmitter release. Accordingly, a reduction in the frequency of miniature excitatory post-synaptic currents (mEPSCs) was observed in Ehmt1(+/-) neurons. These data demonstrate that Ehmt1 haploinsufficiency in mice leads to learning deficits and synaptic dysfunction, providing a possible mechanism for the ID phenotype in patients with KS.


Assuntos
Anormalidades Craniofaciais/genética , Cardiopatias Congênitas/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Aprendizagem , Animais , Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Deficiência Intelectual/fisiopatologia , Camundongos , Camundongos Knockout , Células Piramidais/patologia , Sinapses/patologia
6.
Am J Hum Genet ; 91(5): 872-82, 2012 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-23122586

RESUMO

Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Here we present OTOGL mutations, a homozygous one base pair deletion (c.1430 delT) causing a frameshift (p.Val477Glufs(∗)25) in a large consanguineous family and two compound heterozygous mutations, c.547C>T (p.Arg183(∗)) and c.5238+5G>A, in a nonconsanguineous family with moderate nonsyndromic sensorineural hearing loss. OTOGL maps to the DFNB84 locus at 12q21.31 and encodes otogelin-like, which has structural similarities to the epithelial-secreted mucin protein family. We demonstrate that Otogl is expressed in the inner ear of vertebrates with a transcription level that is high in embryonic, lower in neonatal, and much lower in adult stages. Otogelin-like is localized to the acellular membranes of the cochlea and the vestibular system and to a variety of inner ear cells located underneath these membranes. Knocking down of otogl with morpholinos in zebrafish leads to sensorineural hearing loss and anatomical changes in the inner ear, supporting that otogelin-like is essential for normal inner ear function. We propose that OTOGL mutations affect the production and/or function of acellular structures of the inner ear, which ultimately leads to sensorineural hearing loss.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Mutação , Adolescente , Animais , Pré-Escolar , Aberrações Cromossômicas , Cóclea/metabolismo , Cóclea/patologia , Exoma , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Mutação INDEL , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Ratos , Peixe-Zebra
7.
Hum Mol Genet ; 20(18): 3592-605, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21685204

RESUMO

Recent studies have established ciliary dysfunction as the underlying cause of a broad range of multi-organ phenotypes, known as 'ciliopathies'. Ciliopathy-associated proteins have a common site of action in the cilium, however, their overall importance for ciliary function differs, as implied by the extreme variability in ciliopathy phenotypes. The aim of this study was to gain more insight in the function of two ciliopathy-associated protein homologs, RPGR interacting protein 1 (RPGRIP1) and RPGRIP1-like protein (RPGRIP1L). Mutations in RPGRIP1 lead to the eye-restricted disease Leber congenital amaurosis, while mutations in RPGRIP1L are causative for Joubert and Meckel syndrome, which affect multiple organs and are at the severe end of the ciliopathy spectrum. Using tandem affinity purification in combination with mass spectrometry, we identified Nek4 serine/threonine kinase as a prominent component of both the RPGRIP1- as well as the RPGRIP1L-associated protein complex. In ciliated cells, this kinase localized to basal bodies, while in ciliated organs, the kinase was predominantly detected at the ciliary rootlet. Down-regulation of NEK4 in ciliated cells led to a significant decrease in cilium assembly, pointing to a role for Nek4 in cilium dynamics. We now hypothesize that RPGRIP1 and RPGRIP1L function as cilium-specific scaffolds that recruit a Nek4 signaling network which regulates cilium stability. Our data are in line with previously established roles in the cilium of other members of the Nek protein family and define NEK4 as a ciliopathy candidate gene.


Assuntos
Doenças Cerebelares/metabolismo , Cílios/metabolismo , Anormalidades do Olho/metabolismo , Doenças Renais Císticas/metabolismo , Amaurose Congênita de Leber/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Anormalidades Múltiplas , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Doenças Cerebelares/enzimologia , Doenças Cerebelares/genética , Cerebelo/anormalidades , Cílios/enzimologia , Cílios/genética , Proteínas do Citoesqueleto , Anormalidades do Olho/enzimologia , Anormalidades do Olho/genética , Humanos , Doenças Renais Císticas/enzimologia , Doenças Renais Císticas/genética , Amaurose Congênita de Leber/enzimologia , Amaurose Congênita de Leber/genética , Quinases Relacionadas a NIMA , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas/genética , Ratos , Ratos Wistar , Retina/anormalidades , Retina/enzimologia , Retina/metabolismo
8.
Proc Natl Acad Sci U S A ; 107(19): 8599-604, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20445106

RESUMO

Structural features of neurons create challenges for effective production and distribution of essential metabolic energy. We investigated how metabolic energy is distributed between cellular compartments in photoreceptors. In avascular retinas, aerobic production of energy occurs only in mitochondria that are located centrally within the photoreceptor. Our findings indicate that metabolic energy flows from these central mitochondria as phosphocreatine toward the photoreceptor's synaptic terminal in darkness. In light, it flows in the opposite direction as ATP toward the outer segment. Consistent with this model, inhibition of creatine kinase in avascular retinas blocks synaptic transmission without influencing outer segment activity. Our findings also reveal how vascularization of neuronal tissue can influence the strategies neurons use for energy management. In vascularized retinas, mitochondria in the synaptic terminals of photoreceptors make neurotransmission less dependent on creatine kinase. Thus, vasculature of the tissue and the intracellular distribution of mitochondria can play key roles in setting the strategy for energy distribution in neurons.


Assuntos
Escuridão , Metabolismo Energético/fisiologia , Retina/fisiologia , Animais , Creatina Quinase/antagonistas & inibidores , Creatina Quinase/metabolismo , Dinitrofluorbenzeno/farmacologia , Eletrorretinografia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/efeitos da radiação , Glutamatos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/efeitos da radiação , Modelos Biológicos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/enzimologia , Terminações Pré-Sinápticas/efeitos da radiação , Inibidores de Proteínas Quinases/farmacologia , Retina/efeitos dos fármacos , Retina/enzimologia , Retina/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Segmento Externo das Células Fotorreceptoras da Retina/efeitos dos fármacos , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/efeitos da radiação , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/enzimologia , Vasos Retinianos/efeitos da radiação , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/efeitos da radiação , Urodelos/fisiologia
9.
Proc Natl Acad Sci U S A ; 106(24): 9709-14, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19478059

RESUMO

ATP8B1 deficiency is caused by autosomal recessive mutations in ATP8B1, which encodes the putative phospatidylserine flippase ATP8B1 (formerly called FIC1). ATP8B1 deficiency is primarily characterized by cholestasis, but extrahepatic symptoms are also found. Because patients sometimes report reduced hearing capability, we investigated the role of ATP8B1 in auditory function. Here we show that ATP8B1/Atp8b1 deficiency, both in patients and in Atp8b1(G308V/G308V) mutant mice, causes hearing loss, associated with progressive degeneration of cochlear hair cells. Atp8b1 is specifically localized in the stereocilia of these hair cells. This indicates that the mechanosensory function and integrity of the cochlear hair cells is critically dependent on ATP8B1 activity, possibly through maintaining lipid asymmetry in the cellular membranes of stereocilia.


Assuntos
Adenosina Trifosfatases/fisiologia , Audição/fisiologia , Adenosina Trifosfatases/genética , Animais , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Camundongos , Camundongos Mutantes , Órgão Espiral/patologia , Proteínas de Transferência de Fosfolipídeos
10.
Hum Mol Genet ; 18(1): 51-64, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18826961

RESUMO

Usher syndrome (USH) and Leber congenital amaurosis (LCA) are autosomal recessive disorders resulting in syndromic and non-syndromic forms of blindness. In order to gain insight into the pathogenic mechanisms underlying retinal degeneration, we searched for interacting proteins of USH2A isoform B (USH2A(isoB)) and the LCA5-encoded protein lebercilin. We identified a novel isoform of the centrosomal ninein-like protein, hereby named Nlp isoform B (Nlp(isoB)), as a common interactor. Although we identified the capacity of this protein to bind calcium with one of its three EF-hand domains, the interacton with USH2A(isoB) did not depend on this. Upon expression in ARPE-19 cells, recombinant Nlp(isoB), lebercilin and USH2A(isoB) were all found to co-localize at the centrosomes. Staining of retinal sections with specific antibodies against all three proteins revealed their co-localization at the basal bodies of the photoreceptor-connecting cilia. Based on this subcellular localization and the nature of their previously identified binding partners, we hypothesize that the pathogenic mechanisms for LCA and USH show significant overlap and involve defects in ciliogenesis, cilia maintenance and intraflagellar and/or microtubule-based transport. The direct association of Nlp(isoB) with USH2A(isoB) and lebercilin indicates that Nlp can be considered as a novel candidate gene for USH, LCA and allied retinal ciliopathies.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Atrofia Óptica Hereditária de Leber/metabolismo , Síndromes de Usher/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Atrofia Óptica Hereditária de Leber/genética , Células Fotorreceptoras/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Retina/metabolismo , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido , Síndromes de Usher/genética
11.
J Cell Biol ; 175(1): 33-9, 2006 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17015618

RESUMO

The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking the integrin alpha3 subunit die neonatally because of severe abnormalities in the lung and kidney epithelia. We report the generation of Cd151-null mice that recapitulate the renal pathology of human patients, i.e., with age they develop massive proteinuria caused by focal glomerulosclerosis, disorganization of the glomerular basement membrane, and tubular cystic dilation. However, neither skin integrity nor hearing ability are impaired in the Cd151-null mice. Furthermore, we generated podocyte-specific conditional knockout mice for the integrin alpha3 subunit that show renal defects similar to those in the Cd151 knockout mice. Our results support the hypothesis that CD151 plays a key role in strengthening alpha3beta1-mediated adhesion in podocytes.


Assuntos
Antígenos CD/genética , Insuficiência Renal/genética , Animais , Adesão Celular , Genótipo , Membrana Basal Glomerular/patologia , Integrina alfa3/genética , Integrina alfa3beta1/fisiologia , Túbulos Renais/patologia , Camundongos , Mutação , Podócitos/citologia , Tetraspanina 24
12.
Invest Ophthalmol Vis Sci ; 61(2): 39, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32097476

RESUMO

Purpose: Familial exudative vitreoretinopathy (FEVR) is an inherited retinal disease in which the retinal vasculature is affected. Patients with FEVR typically lack or have abnormal vasculature in the peripheral retina, the outcome of which can range from mild visual impairment to complete blindness. A missense mutation (p.His455Tyr) in ZNF408 was identified in an autosomal dominant FEVR family. Little, however, is known about the molecular role of ZNF408 and how its defect leads to the clinical features of FEVR. Methods: Using CRISPR/Cas9 technology, two homozygous mutant zebrafish models with truncated znf408 were generated, as well as one heterozygous and one homozygous missense znf408 model in which the human p.His455Tyr mutation is mimicked. Results: Intriguingly, all three znf408-mutant zebrafish strains demonstrated progressive retinal vascular pathology, initially characterized by a deficient hyaloid vessel development at 5 days postfertilization (dpf) leading to vascular insufficiency in the retina. The generation of stable mutant lines allowed long-term follow up studies, which showed ectopic retinal vascular hyper-sprouting at 90 dpf and extensive vascular leakage at 180 dpf. Conclusions: Together, our data demonstrate an important role for znf408 in the development and maintenance of the vascular system within the retina.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Vitreorretinopatias Exsudativas Familiares , Vasos Retinianos/patologia , Animais , Proteínas de Ligação a DNA/genética , Vitreorretinopatias Exsudativas Familiares/genética , Vitreorretinopatias Exsudativas Familiares/fisiopatologia , Mutação de Sentido Incorreto , Peixe-Zebra
13.
Sci Rep ; 8(1): 9675, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946172

RESUMO

Mutations in C2orf71 are causative for autosomal recessive retinitis pigmentosa and occasionally cone-rod dystrophy. We have recently discovered that the protein encoded by this gene is important for modulation of the ciliary membrane through the recruitment of an actin assembly module, and have therefore renamed the gene to PCARE (photoreceptor cilium actin regulator). Here, we report on the identification of two copies of the c2orf71/pcare gene in zebrafish, pcare1 and pcare2. To study the role of the gene most similar to human PCARE, pcare1, we have generated a stable pcare1 mutant zebrafish model (designated pcare1 rmc100/rmc100 ) in which the coding sequence was disrupted using CRISPR/Cas9 technology. Retinas of both embryonic (5 dpf) and adult (6 mpf) pcare1 rmc100/rmc100 zebrafish display a clear disorganization of photoreceptor outer segments, resembling the phenotype observed in Pcare-/- mice. Optokinetic response and visual motor response measurements indicated visual impairment in pcare1 rmc100/rmc100 zebrafish larvae at 5 dpf. In addition, electroretinogram measurements showed decreased b-wave amplitudes in pcare1 rmc100/rmc100 zebrafish as compared to age- and strain-matched wild-type larvae, indicating a defect in the transretinal current. Altogether, our data show that lack of pcare1 causes a retinal phenotype in zebrafish and indicate that the function of the PCARE gene is conserved across species.


Assuntos
Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Eletrorretinografia , Imuno-Histoquímica , Mesotelina , Camundongos , Morfogênese/genética , Morfogênese/fisiologia , Estimulação Luminosa , Proteínas de Peixe-Zebra/genética
14.
PLoS One ; 13(7): e0200789, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30052645

RESUMO

Mutations in eyes shut homolog (EYS), a gene predominantly expressed in the photoreceptor cells of the retina, are among the most frequent causes of autosomal recessive (ar) retinitis pigmentosa (RP), a progressive retinal disorder. Due to the absence of EYS in several rodent species and its retina-specific expression, still little is known about the exact function of EYS and the pathogenic mechanism underlying EYS-associated RP. We characterized eys in zebrafish, by RT-PCR analysis on zebrafish eye-derived RNA, which led to the identification of a 8,715 nucleotide coding sequence that is divided over 46 exons. The transcript is predicted to encode a 2,905-aa protein that contains 39 EGF-like domains and five laminin A G-like domains, which overall shows 33% identity with human EYS. To study the function of EYS, we generated a stable eysrmc101/rmc101 mutant zebrafish model using CRISPR/Cas9 technology. The introduced lesion is predicted to result in premature termination of protein synthesis and lead to loss of Eys function. Immunohistochemistry on retinal sections revealed that Eys localizes at the region of the connecting cilium and that both rhodopsin and cone transducin are mislocalized in the absence of Eys. Electroretinogram recordings showed diminished b-wave amplitudes in eysrmc101/rmc101 zebrafish (5 dpf) compared to age- and strain-matched wild-type larvae. In addition, decreased locomotor activity in response to light stimuli was observed in eys mutant larvae. Altogether, our study shows that absence of Eys leads to a disorganized retinal architecture and causes visual dysfunction in zebrafish.


Assuntos
Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Visão Ocular , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Sistemas CRISPR-Cas , Análise Mutacional de DNA , Eletrorretinografia , Genes Recessivos , Genótipo , Humanos , Larva , Mutação , Domínios Proteicos , RNA/análise , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/genética , Rodopsina/metabolismo , Transducina/metabolismo , Peixe-Zebra
15.
Genetics ; 170(4): 1887-96, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15965244

RESUMO

The rat is the most extensively studied model organism and is broadly used in biomedical research. Current rat disease models are selected from existing strains and their number is thereby limited by the degree of naturally occurring variation or spontaneous mutations. We have used ENU mutagenesis to increase genetic variation in laboratory rats and identified a recessive mutant, named tornado, showing aberrant circling behavior, hyperactivity, and stereotypic head shaking. More detailed analysis revealed profound deafness due to disorganization and degeneration of the organ of Corti that already manifests at the onset of hearing. We set up a single nucleotide polymorphism (SNP)-based mapping strategy to identify the affected gene, revealing strong linkage to the central region of chromosome 1. Candidate gene resequencing identified a point mutation that introduces a premature stopcodon in Myo7a. Mutations in human MYO7A result in Usher syndrome type 1B, a severe autosomal inherited recessive disease that involves deafness and vestibular dysfunction. Here, we present the first characterized rat model for this disease. In addition, we demonstrate proof of principle for the generation and cloning of human disease models in rat using ENU mutagenesis, providing good perspectives for systematic phenotypic screens in the rat.


Assuntos
Modelos Animais de Doenças , Etilnitrosoureia/farmacologia , Mutagênese , Mutagênicos/farmacologia , Síndromes de Usher/genética , Animais , Transtornos Cromossômicos , Códon de Terminação , Dineínas/genética , Genes Recessivos , Ligação Genética , Humanos , Masculino , Miosina VIIa , Miosinas/genética , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Ratos , Ratos Wistar , Síndromes de Usher/classificação
16.
Acta Otolaryngol ; 126(3): 237-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16618647

RESUMO

CONCLUSIONS: The fact that pseudohypoaldosteronism type 1 (PHA-1) patients with a defect in the alpha subunit of epithelial sodium channels (ENaC) in the cochlea have normal hearing suggests compensation by alternative sodium transport mechanisms. Consequently, hearing loss due to defective cochlear transmembrane serine protease TMPRSS3 activity is likely to be related to its effect on proneurotrophin cleavage, indicating an action on neurological components of hearing. The normal hearing of PHA-1 patients with affected mineralocorticoid receptors, together with experimental results in animals, indicates that the mineralocorticoid aldosterone is not the most crucial regulator of sodium transport in the cochlea. OBJECTIVE: Profound hearing loss has been observed in patients with a defect in transmembrane serine protease TMPRSS3, the presumed activator of ENaCs. Renal ENaCs and their regulators, such as the mineralocorticoid receptors, are present in the cochlear structures involved in hearing. The aim of this study was to investigate whether PHA-1 patients with defects in these channels or regulators suffer from hearing impairment. MATERIAL AND METHODS: Pure-tone audiometry was performed in four cases with PHA-1 due to mutations in alphaENaC (n=2) or mineralocorticoid receptor (n=2). RESULTS: All examined cases had normal hearing at all tested frequencies.


Assuntos
Perda Auditiva Neurossensorial/diagnóstico , Pseudo-Hipoaldosteronismo/diagnóstico , Canais de Sódio/metabolismo , Adulto , Audiometria de Tons Puros , Criança , Canais Epiteliais de Sódio , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Pseudo-Hipoaldosteronismo/genética , Valores de Referência , Medição de Risco , Estudos de Amostragem , Sensibilidade e Especificidade , Canais de Sódio/genética
17.
Mol Ther Nucleic Acids ; 5(10): e381, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802265

RESUMO

Usher syndrome (USH) is the most common cause of combined deaf-blindness in man. The hearing loss can be partly compensated by providing patients with hearing aids or cochlear implants, but the loss of vision is currently untreatable. In general, mutations in the USH2A gene are the most frequent cause of USH explaining up to 50% of all patients worldwide. The first deep-intronic mutation in the USH2A gene (c.7595-2144A>G) was reported in 2012, leading to the insertion of a pseudoexon (PE40) into the mature USH2A transcript. When translated, this PE40-containing transcript is predicted to result in a truncated non-functional USH2A protein. In this study, we explored the potential of antisense oligonucleotides (AONs) to prevent aberrant splicing of USH2A pre-mRNA as a consequence of the c.7595-2144A>G mutation. Engineered 2'-O-methylphosphorothioate AONs targeting the PE40 splice acceptor site and/or exonic splice enhancer regions displayed significant splice correction potential in both patient derived fibroblasts and a minigene splice assay for USH2A c.7595-2144A>G, whereas a non-binding sense oligonucleotide had no effect on splicing. Altogether, AON-based splice correction could be a promising approach for the development of a future treatment for USH2A-associated retinitis pigmentosa caused by the deep-intronic c.7595-2144A>G mutation.

18.
Hear Res ; 176(1-2): 94-104, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12583884

RESUMO

It has recently been demonstrated that endolymphatic sac (ES) ribosome-rich (dark) cells respond to induced endolymph changes and are thus likely to be involved in endolymph homeostasis. Therefore, we studied the ultrastructural characteristics of rat ES ribosome-rich cells during development in order to determine the cellular distribution of organelles involved in protein metabolism, secretion and absorption, indicative for their contribution to endolymph homeostasis. During embryonal stages ribosome-rich cells contain a limited number and variety of organelles and are predominantly involved in the production of components for cell growth and differentiation. In the young adult stage (P60) three different states of ribosome-rich cells may be distinguished. State A resembles a cell with only limited metabolic activities whereas state B is characterized by numerous different intracellular organelles and is considered to be involved in production and secretion as well as absorption and degradation of complex proteins. A third cellular state, state C, is filled with phagolysosomes and contains very few other organelles. This is considered to be a final (pre)apoptotic state. Autoradiography data suggest that ES ribosome-rich cells are capable of synthesis and secretion of tyrosine-containing proteins and may thus be involved in regulation of the osmolarity of endolymph based on the capacity to bind cations as well as water molecules. In addition, ES ribosome-rich cells appear to synthesize and secrete fucosylated glycoproteins into the endolymph. In conclusion, the present data suggest that ES ribosome-rich cells are actively involved in endolymph homeostasis through secretion and absorption of complex proteins and it is hypothesized that they are able to adapt their function or activities in response to changes in endolymph composition.


Assuntos
Saco Endolinfático/embriologia , Saco Endolinfático/ultraestrutura , Ribossomos/ultraestrutura , Envelhecimento , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Autorradiografia , Desenvolvimento Embrionário e Fetal , Saco Endolinfático/citologia , Saco Endolinfático/metabolismo , Fucose/farmacocinética , Microscopia Eletrônica , Organelas/metabolismo , Organelas/ultraestrutura , Ratos , Ratos Wistar , Tirosina/farmacocinética
19.
Laryngoscope ; 112(3): 534-41, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12148867

RESUMO

OBJECTIVE/HYPOTHESIS: The purpose of the study was to examine the specific involvement of endolymphatic sac mitochondria-rich cells in endolymph homeostasis. STUDY DESIGN: Transmission electron microscopy and immunohistochemistry were performed on the endolymphatic sac of young adult rats, and two important developmental stages were also investigated. METHODS: Ultrastructural characteristics of endolymphatic sac mitochondria-rich cells were studied more concisely and compared with renal mitochondria-rich cells (i.e., the intercalated cells). In addition, expression of cytokeratins 7 and 19 was determined. RESULTS: Until birth, only one type of mitochondria-rich cell is observed in the rat endolymphatic sac. In young adult animals, distinct differences in mitochondria-rich cell ultrastructure in the endolymphatic sac enables classification into subtypes or configurations. Comparison of endolymphatic sac mitochondria-rich cells with renal intercalated cells reveals striking similarities and provides additional information on their specific function in endolymph homeostasis. Furthermore, differences in cytokeratin expression are determined in endolymphatic sac mitochondria-rich cells. CONCLUSIONS: Differences in morphology of endolymphatic sac mitochondria-rich cells develop after birth and may reflect a distinct functional or physiological state of the cell. In analogy to renal intercalated cells, the distribution patterns of H+-adenosine triphosphatase and Cl-/HCO3- exchanger may differ between subtypes. We propose that subtype A mitochondria-rich cells, from which protruding A mitochondria-rich cells are the activated state, are involved in proton secretion (apical H+-adenosine triphosphatase) and thus are potential candidates for hearing loss accompanying renal tubular acidosis. Subtype B mitochondria-rich cells are the most likely candidates to be affected in Pendred syndrome because of the assumed function of pendrin as apical Cl-/HCO3- exchanger.


Assuntos
Saco Endolinfático/ultraestrutura , Mitocôndrias/metabolismo , Animais , Saco Endolinfático/citologia , Saco Endolinfático/fisiologia , Homeostase , Técnicas Imunoenzimáticas , Queratinas/metabolismo , Rim/citologia , Microscopia Eletrônica , Ratos , Ratos Wistar
20.
PLoS One ; 8(11): e79369, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223178

RESUMO

Leber congenital amaurosis (LCA) is the most severe form of retinal dystrophy with an onset in the first year of life. The most frequent genetic cause of LCA, accounting for up to 15% of all LCA cases in Europe and North-America, is a mutation (c.2991+1655AG) in intron 26 of CEP290. This mutation generates a cryptic splice donor site resulting in the insertion of an aberrant exon (exon X) containing a premature stop codon to CEP290 mRNA. In order to study the pathophysiology of the intronic CEP290 mutation, we generated two humanized knock-in mouse models each carrying ~6.3 kb of the human CEP290 gene, either with or without the intronic mutation. Transcriptional characterization of these mouse models revealed an unexpected splice pattern of CEP290 mRNA, especially in the retina. In both models, a new cryptic exon (coined exon Y) was identified in ~5 to 12% of all Cep290 transcripts. This exon Y was expressed in all murine tissues analyzed but not detected in human retina or fibroblasts of LCA patients. In addition, exon x that is characteristic of LCA in humans, was expressed at only very low levels in the retina of the LCA mouse model. Western blot and immunohistochemical analyses did not reveal any differences between the two transgenic models and wild-type mice. Together, our results show clear differences in the recognition of splice sites between mice and humans, and emphasize that care is warranted when generating animal models for human genetic diseases caused by splice mutations.


Assuntos
Antígenos de Neoplasias/genética , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Amaurose Congênita de Leber/genética , Proteínas de Neoplasias/genética , Splicing de RNA , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas do Citoesqueleto , Éxons/genética , Feminino , Humanos , Camundongos , Gravidez , Retina/metabolismo , Especificidade da Espécie , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA