Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 78(6): 1252-1263.e3, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32362315

RESUMO

Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.


Assuntos
Troca Genética/fisiologia , Recombinação Homóloga/fisiologia , Meiose/fisiologia , Animais , Segregação de Cromossomos/genética , Troca Genética/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Recombinação Homóloga/genética , Masculino , Meiose/genética , Camundongos , Camundongos Endogâmicos DBA , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Ácidos Nucleicos Heteroduplexes/genética
2.
Mol Cell ; 49(6): 1097-107, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23434370

RESUMO

Faithful duplication of the genome in S phase followed by its accurate segregation in mitosis is essential to maintain genomic integrity. Recent studies have suggested that proteins involved in DNA transactions are also required for whole-chromosome stability. Here we demonstrate that the MRN (Mre11, Rad50, and Nbs1) complex and CtIP are required for accurate chromosome segregation. Depletion of Mre11 or CtIP, antibody-mediated inhibition of Mre11, or small-molecule inhibition of MRN using mirin results in metaphase chromosome alignment defects in Xenopus egg extracts. Similarly, loss of MRN function adversely affects spindle assembly around DNA-coated beads in egg extracts. Inhibition of MRN function in mammalian cells triggers a metaphase delay and disrupts the RCC1-dependent RanGTP gradient. Addition of the Mre11 inhibitor mirin to egg extracts and mammalian cells reduces RCC1 association with mitotic chromosomes. Thus, the MRN-CtIP pathway contributes to Ran-dependent mitotic spindle assembly by modulating RCC1 chromosome association.


Assuntos
Proteínas de Transporte/metabolismo , Segregação de Cromossomos , Metáfase , Proteínas Nucleares/metabolismo , Fuso Acromático/metabolismo , Hidrolases Anidrido Ácido , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Extratos Celulares , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Endodesoxirribonucleases , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Complexos Multiproteicos/fisiologia , Proteínas Nucleares/fisiologia , Ligação Proteica , Análise de Célula Única , Xenopus , Proteínas de Xenopus/fisiologia , Proteína ran de Ligação ao GTP/metabolismo
3.
Mol Cell ; 49(4): 657-67, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23273981

RESUMO

DNA double-strand breaks (DSBs) activate a DNA damage response (DDR) that coordinates checkpoint pathways with DNA repair. ATM and ATR kinases are activated sequentially. Homology-directed repair (HDR) is initiated by resection of DSBs to generate 3' single-stranded DNA overhangs. How resection and HDR are activated during DDR is not known, nor are the roles of ATM and ATR in HDR. Here, we show that CtIP undergoes ATR-dependent hyperphosphorylation in response to DSBs. ATR phosphorylates an invariant threonine, T818 of Xenopus CtIP (T859 in human). Nonphosphorylatable CtIP (T818A) does not bind to chromatin or initiate resection. Our data support a model in which ATM activity is required for an early step in resection, leading to ATR activation, CtIP-T818 phosphorylation, and accumulation of CtIP on chromatin. Chromatin binding by modified CtIP precedes extensive resection and full checkpoint activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/fisiologia , Extratos Celulares/isolamento & purificação , Cromatina/metabolismo , Sequência Conservada , Clivagem do DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Coelhos , Proteínas Supressoras de Tumor/química , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/química , Proteínas de Xenopus/fisiologia , Xenopus laevis
4.
Semin Cell Dev Biol ; 54: 177-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26880205

RESUMO

During meiosis, numerous DNA double-strand breaks (DSBs) are formed as part of the normal developmental program. This seemingly destructive behavior is necessary for successful meiosis, since repair of the DSBs through homologous recombination (HR) helps to produce physical links between the homologous chromosomes essential for correct chromosome segregation later in meiosis. However, DSB formation at such a massive scale also introduces opportunities to generate gross chromosomal rearrangements. In this review, we explore ways in which meiotic DSBs can result in such genomic alterations.


Assuntos
Instabilidade Genômica , Células Germinativas/metabolismo , Animais , Cromotripsia , Quebras de DNA de Cadeia Dupla , Rearranjo Gênico/genética , Humanos , Meiose/genética
5.
J Biol Chem ; 289(35): 24617-29, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25016020

RESUMO

PALB2 links BRCA1 and BRCA2 in homologous recombinational repair of DNA double strand breaks (DSBs). Mono-allelic mutations in PALB2 increase the risk of breast, pancreatic, and other cancers, and biallelic mutations cause Fanconi anemia (FA). Like Brca1 and Brca2, systemic knock-out of Palb2 in mice results in embryonic lethality. In this study, we generated a hypomorphic Palb2 allele expressing a mutant PALB2 protein unable to bind BRCA1. Consistent with an FA-like phenotype, cells from the mutant mice showed hypersensitivity and chromosomal breakage when treated with mitomycin C, a DNA interstrand crosslinker. Moreover, mutant males showed reduced fertility due to impaired meiosis and increased apoptosis in germ cells. Interestingly, mutant meiocytes showed a significant defect in sex chromosome synapsis, which likely contributed to the germ cell loss and fertility defect. Our results underscore the in vivo importance of the PALB2-BRCA1 complex formation in DSB repair and male meiosis.


Assuntos
Proteína BRCA1/metabolismo , Infertilidade Masculina/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Proteína BRCA1/química , Dano ao DNA , Reparo do DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi , Recombinação Homóloga , Humanos , Marcação In Situ das Extremidades Cortadas , Infertilidade Masculina/genética , Masculino , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas Supressoras de Tumor/química
6.
Mol Cell Biol ; 26(24): 9544-54, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17030607

RESUMO

The nucleoprotein filament formed by Rad51 polymerization on single-stranded DNA is essential for homologous pairing and strand exchange. ATP binding is required for Rad51 nucleoprotein filament formation and strand exchange, but ATP hydrolysis is not required for these functions in vitro. Previous studies have shown that a yeast strain expressing the rad51-K191R allele is sensitive to ionizing radiation, suggesting an important role for ATP hydrolysis in vivo. The recruitment of Rad51-K191R to double-strand breaks is defective in vivo, and this phenotype can be suppressed by elimination of the Srs2 helicase, an antagonist of Rad51 filament formation. The phenotype of the rad51-K191R strain is also suppressed by overexpression of Rad54. In vitro, the Rad51-K191R protein exhibits a slight decrease in binding to DNA, consistent with the defect in presynaptic filament formation. However, the rad51-K191R mutation is dominant in heterozygous diploids, indicating that the defect is not due simply to reduced affinity for DNA. We suggest the Rad51-K191R protein either forms an altered filament or is defective in turnover, resulting in a reduced pool of free protein available for DNA binding.


Assuntos
Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/fisiologia , Substituição de Aminoácidos/genética , Nucleoproteínas/metabolismo , Rad51 Recombinase/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Alelos , Arginina/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Raios gama , Deleção de Genes , Lisina/genética , Mutação , Transporte Proteico/genética , Rad51 Recombinase/genética , Rad51 Recombinase/efeitos da radiação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/efeitos da radiação
7.
J Invest Dermatol ; 122(1): 159-66, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14962104

RESUMO

To determine whether inhibition of PKC-beta activity decreases pigmentation, paired cultures of primary human melanocytes were first pretreated with bisindolylmaleimide (Bis), a selective PKC inhibitor, or vehicle alone for 30 min, and then treated with TPA for an additional 90 min to activate PKC in the presence of Bis. Bis blocked the expected induction of tyrosinase activity by activation of PKC. Addition of a peptide corresponding to amino acids 501-511 of tyrosinase containing its PKC-beta phosphorylation site, a presumptive PKC-beta pseudosubstrate, gave similar results. To determine whether Bis reduces pigmentation in vivo, the backs of four shaved and depilated pigmented guinea pigs were UV irradiated with a solar simulator for 2 wk excluding weekends. Compared to vehicle alone, Bis (300 microM), applied twice daily to paired sites for various periods encompassing the irradiation period, decreased tanning. Bis also, although less strikingly, reduced basal epidermal melanin when topically applied twice daily, 5 d per wk, for 3 wk to shaved and depilated unirradiated skin. Moreover, topical application of Bis (100 microM) once daily for 9 d to the freshly depilated backs of 8-wk-old mice markedly lightened the color of regrowing hair. These results demonstrate that inhibiting PKC activity in vivo selectively blocks tanning and reduces basal pigmentation in the epidermis and in anagen hair shafts.


Assuntos
Inibidores Enzimáticos/farmacologia , Cor de Cabelo/fisiologia , Indóis/farmacologia , Maleimidas/farmacologia , Melanócitos/enzimologia , Proteína Quinase C/antagonistas & inibidores , Pigmentação da Pele/fisiologia , Animais , Células Cultivadas , Células Epidérmicas , Feminino , Cobaias , Cor de Cabelo/efeitos dos fármacos , Humanos , Técnicas In Vitro , Melaninas/metabolismo , Melanócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Monofenol Mono-Oxigenase/metabolismo , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta
8.
J Cell Biol ; 194(5): 705-20, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21893598

RESUMO

DNA double-strand break (DSB) resection, which results in RPA-bound single-stranded DNA (ssDNA), is activated in S phase by Cdk2. RPA-ssDNA activates the ATR-dependent checkpoint and homology-directed repair (HDR) via Rad51-dependent mechanisms. On the other hand, the fate of DSBs sustained during vertebrate M phase is largely unknown. We use cell-free Xenopus laevis egg extracts to examine the recruitment of proteins to chromatin after DSB formation. We find that S-phase extract recapitulates a two-step resection mechanism. M-phase chromosomes are also resected in cell-free extracts and cultured human cells. In contrast to the events in S phase, M-phase resection is solely dependent on MRN-CtIP. Despite generation of RPA-ssDNA, M-phase resection does not lead to ATR activation or Rad51 chromatin association. Remarkably, we find that Cdk1 permits resection by phosphorylation of CtIP but also prevents Rad51 binding to the resected ends. We have thus identified Cdk1 as a critical regulator of DSB repair in M phase. Cdk1 induces persistent ssDNA-RPA overhangs in M phase, thereby preventing both classical NHEJ and Rad51-dependent HDR.


Assuntos
Proteína Quinase CDC2/metabolismo , Divisão Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Rad51 Recombinase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Antígenos Nucleares/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteína Quinase CDC2/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Sistema Livre de Células , Quinase 1 do Ponto de Checagem , Cromatina/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Autoantígeno Ku , Proteína Homóloga a MRE11 , Meiose/fisiologia , Mitose/fisiologia , Membrana Nuclear/fisiologia , Óvulo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RecQ Helicases/metabolismo , Proteína de Replicação A/metabolismo , Fase S/fisiologia , Helicase da Síndrome de Werner , Proteínas de Xenopus/antagonistas & inibidores , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA