Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-32920209

RESUMO

Climate change is expected to produce shifts in species distributions as well as behavioural and physiological adaptations to find suitable conditions or to cope with the altered environment. The paper wasps Polistes dominula and Polistes gallicus are closely related species, native in the European Mediterranean region and North Africa. P. dominula has expanded its range to the relatively cooler climates of Northern and Eastern Europe, but P. gallicus remained in its original distribution area. In order to reveal their metabolic adaptation to the current climate conditions, and the impact on energy demand at future climate conditions, we investigated the respiratory metabolic rate (CO2 production) of P. dominula from Austria and P. gallicus from Italy. In contrast to the metabolic cold adaptation hypothesis their standard metabolic rate was nearly the same and increased in a typical exponential course with increasing ambient temperature. The metabolic rate of active wasps was higher than the standard metabolic rate and increased with the wasps' activity. There was no obvious difference in the active metabolism between the two species, with the exception that some P. gallicus individuals showed some extraordinary high values. A simultaneous measurement of metabolic rate and body temperature revealed that increased CO2 production was accompanied by endothermic activity. The two investigated populations of paper wasps are quite similar in their metabolic response to temperature, although they live in different climate regions. The spread of P. dominula into cooler regions did not have significant influence on their active and standard metabolic rate.


Assuntos
Vespas/fisiologia , Animais , Temperatura Corporal , Dióxido de Carbono/metabolismo , Respiração , Especificidade da Espécie , Vespas/classificação , Vespas/metabolismo
2.
J Comp Physiol B ; 194(2): 131-144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441658

RESUMO

Overwintering insects are facing energetic challenges because of food shortage, low temperature, and desiccation stress. Paper wasps of the genus Polistes overwinter as mated adults (gynes) in hibernacula protecting them from predation, snow, and rain but barely from low environmental temperature. In different climates, they face differing overwintering temperature regimes, and therefore they may differ in their energy use. We investigated how much of energy resources built up until autumn is used during diapause dormancy in natural hibernacula by measuring lipid, glycogen, and free carbohydrate content in autumn and early spring in Polistes dominula from temperate European (Austrian) and warm Mediterranean (Italian) climate and Polistes gallicus from Mediterranean climate. Winter energy consumption amounted to ~ 339 and ~ 310 J per wasp in the Austrian and Italian Polistes dominula populations. The smaller Italian Polistes gallicus consumed ~ 247 J. This amounts to 2.62, 2.35, and 1.79 J per day. Of this, the energy demand was mainly fuelled by lipids (84%, 93%, and 90%, respectively), but glycogen stores contributed also considerably (16%, 6%, and 9%). Free carbohydrates decreased only by 0.7%, 1%, and 0.8%. While fat stores seem still sufficient in spring, the wasps depleted most of their carbohydrates. The energy reserves of 396, 400, and 147 J per wasp remaining in spring in the three populations seem sufficient to fuel rest or simple brood care activities for a whole summer but restrict foraging flights to a few hours (~ 3.5-6 h). Results suggest that energy supply might become challenging in expected future climate scenarios.


Assuntos
Metabolismo Energético , Glicogênio , Estações do Ano , Vespas , Animais , Vespas/fisiologia , Glicogênio/metabolismo , Metabolismo dos Lipídeos , Feminino , Metabolismo dos Carboidratos , Diapausa de Inseto/fisiologia
3.
Insects ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37999050

RESUMO

Gynes of paper wasps (Polistes sp.) spend the cold season in sheltered hibernacles. These hibernacles protect against predators and adverse weather conditions but offer only limited protection against low temperatures. During overwintering diapause, wasps live on the energy they store. We investigated the hibernacles' microclimate conditions of species from the Mediterranean (Italy, P. dominula, P. gallicus) and temperate (Austria, P. dominula) climates in order to describe the environmental conditions and calculate the energetic demand of overwintering according to standard metabolic rate functions. The temperatures at the hibernacles differed significantly between the Mediterranean and temperate habitats (average in Austria: 3.2 ± 5.71 °C, in Italy: 8.5 ± 5.29 °C). In both habitats, the hibernacle temperatures showed variance, but the mean hibernacle temperature corresponded closely to the meteorological climate data. Cumulative mass-specific energetic costs over the studied period were the lowest for the temperate P. dominula population compared with both Mediterranean species. The lower costs of the temperate species were a result of the lower hibernacle temperature and acclimation to lower environmental temperatures. Model calculations with an increased mean temperature of up to 3 °C due to climate change indicate a dramatic increase of up to 40% in additional costs.

4.
Insects ; 13(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36135501

RESUMO

Paper wasps are widely distributed in Europe. They live in the warm Mediterranean, and in the harsh Alpine climate. Some species are very careful in their choice of nesting sites to ensure a proper development of the brood. We investigated microclimate conditions at the nests of three species (P. dominula, P. gallicus, P. biglumis) from differing climates, in order to characterize environmental conditions and conduct energetic calculations for an entire breeding season. The mean ambient nest temperature differed significantly in the Mediterranean, temperate, and Alpine habitats, but in all habitats it was about 2 to 3 °C above the standard meteorological data. The energetic calculations of adult wasps' standard and active metabolic rate, based on respiratory measurements, differed significantly, depending on the measured ambient temperatures or the wasps' body temperatures. P. gallicus from the warm Mediterranean climate exhibited the highest energetic costs, whereas P. biglumis from the harsh Alpine climate had the lowest costs. Energetic costs of P. dominula from the temperate climate were somewhat lower than those in the Mediterranean species, but clearly higher than those in the Alpine species. Temperature increase due to climate change may have a severe impact on the wasps' survival as energetic costs increase.

5.
Sci Rep ; 12(1): 3372, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233017

RESUMO

Polistes paper wasps are a widespread taxon inhabiting various climates. They build nests in the open without a protective outer layer, which makes them vulnerable to changing temperatures. To better understand the options they have to react to environmental variation and climate change, we here compare the thermoregulatory behavior of Polistes biglumis from cool Alpine climate with Polistes gallicus from warm Mediterranean climate. Behavioral plasticity helps both of them to withstand environmental variation. P. biglumis builds the nests oriented toward east-south-east to gain solar heat of the morning sun. This increases the brood temperature considerably above the ambience, which speeds up brood development. P. gallicus, by contrast, mostly avoids nesting sites with direct insolation, which protects their brood from heat stress on hot days. To keep the brood temperature below 40-42 °C on warm days, the adults of the two species show differential use of their common cooling behaviors. While P. biglumis prefers fanning of cool ambient air onto the nest heated by the sun and additionally cools with water drops, P. gallicus prefers cooling with water drops because fanning of warm ambient air onto a warm nest would not cool it, and restricts fanning to nests heated by the sun.


Assuntos
Vespas , Animais , Regulação da Temperatura Corporal , Comportamento de Nidação/fisiologia , Temperatura , Vespas/fisiologia , Água
6.
Sci Rep ; 10(1): 8928, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488140

RESUMO

The significant risk of disease transmission has selected for effective immune-defense strategies in insect societies. Division of labour, with individuals specialized in immunity-related tasks, strongly contributes to prevent the spread of diseases. A trade-off, however, may exist between phenotypic specialization to increase task efficiency and maintenance of plasticity to cope with variable colony demands. We investigated the extent of phenotypic specialization associated with a specific task by using allogrooming in the honeybee, Apis mellifera, where worker behaviour might lower ectoparasites load. We adopted an integrated approach to characterize the behavioural and physiological phenotype of allogroomers, by analyzing their behavior (both at individual and social network level), their immunocompetence (bacterial clearance tests) and their chemosensory specialization (proteomics of olfactory organs). We found that allogroomers have higher immune capacity compared to control bees, while they do not differ in chemosensory proteomic profiles. Behaviourally, they do not show differences in the tasks performed (other than allogrooming), while they clearly differ in connectivity within the colonial social network, having a higher centrality than control bees. This demonstrates the presence of an immune-specific physiological and social behavioural specialization in individuals involved in a social immunity related task, thus linking individual to social immunity, and it shows how phenotypes may be specialized in the task performed while maintaining an overall plasticity.


Assuntos
Abelhas/imunologia , Animais , Asseio Animal , Imunocompetência , Comportamento Social
7.
Sci Rep ; 9(1): 3171, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816211

RESUMO

Honeybee colonies are under the threat of many stressors, biotic and abiotic factors that strongly affect their survival. Recently, great attention has been directed at chemical pesticides, including their effects at sub-lethal doses on bee behaviour and colony success; whereas the potential side effects of natural biocides largely used in agriculture, such as entomopathogenic fungi, have received only marginal attention. Here, we report the impact of the fungus Beauveria bassiana on honeybee nestmate recognition ability, a crucial feature at the basis of colony integrity. We performed both behavioural assays by recording bee guards' response towards foragers (nestmate or non-nestmate) either exposed to B. bassiana or unexposed presented at the hive entrance, and GC-MS analyses of the cuticular hydrocarbons (CHCs) of fungus-exposed versus unexposed bees. Our results demonstrated that exposed bees have altered cuticular hydrocarbons and are more easily accepted into foreign colonies than controls. Since CHCs are the main recognition cues in social insects, changes in their composition appear to affect nestmate recognition ability at the colony level. The acceptance of chemically unrecognizable fungus-exposed foragers could therefore favour forager drift and disease spread across colonies.


Assuntos
Abelhas/fisiologia , Desinfetantes/metabolismo , Comportamento de Nidação/efeitos dos fármacos , Animais , Beauveria/química , Desinfetantes/química , Cromatografia Gasosa-Espectrometria de Massas , Comportamento de Nidação/fisiologia , Praguicidas/efeitos adversos
8.
Front Physiol ; 9: 748, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973886

RESUMO

Reproductive and task partitioning in large colonies of social insects suggest that colony members belonging to different castes or performing different tasks during their life (polyethism) may produce specific semiochemicals and be differently sensitive to the variety of pheromones involved in intraspecific chemical communication. The main peripheral olfactory organs are the antennal chemosensilla, where the early olfactory processes take place. At this stage, members of two different families of soluble chemosensory proteins [odorant-binding proteins (OBPs) and chemosensory proteins (CSPs)] show a remarkable affinity for different odorants and act as carriers while a further family, the Niemann-Pick type C2 proteins (NPC2) may have a similar function, although this has not been fully demonstrated. Sensillar lymph also contains Odorant degrading enzymes (ODEs) which are involved in inactivation through degradation of the chemical signals, once the message is conveyed. Despite their importance in chemical communication, little is known about how proteins involved in peripheral olfaction and, more generally antennal proteins, differ in honeybees of different caste, task and age. Here, we investigate for the first time, using a shotgun proteomic approach, the antennal profile of honeybees of different castes (queens and workers) and workers performing different tasks (nurses, guards, and foragers) by controlling for the potential confounding effect of age. Regarding olfactory proteins, major differences were observed between queens and workers, some of which were found to be more abundant in queens (OBP3, OBP18, and NPC2-1) and others to be more abundant in workers (OBP15, OBP21, CSP1, and CSP3); while between workers performing different tasks, OBP14 was more abundant in nurses with respect to guards and foragers. Apart from proteins involved in olfaction, we have found that the antennal proteomes are mainly characterized by castes and tasks, while age has no effect on antennal protein profile. Among the main differences, the strong decrease in vitellogenins found in guards and foragers is not associated with age.

9.
J Comp Physiol B ; 187(2): 277-290, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27744515

RESUMO

The two paper wasps, Polistes dominula and Polistes gallicus, are related species with strongly differing distribution ranges. We investigated thermal tolerance traits (critical thermal limits and metabolic response to temperature) to gain knowledge about physiological adaptations to their local climate conditions and to get evidence for the reasons of P. dominula's successful dispersion. Body and ambient temperature measurements at the nests revealed behavioural adaptations to microclimate. The species differed clearly in critical thermal minimum (P. dominula -1.4 °C, P. gallicus -0.4 °C), but not significantly in critical thermal maximum of activity (P. dominula 47.1 °C, P. gallicus 47.6 °C). The metabolic response did not reveal clear adaptations to climate conditions. At low and high temperatures, the metabolic rate of P. dominula was higher, and at intermediate temperatures, we determined higher values in P. gallicus. However, the species exhibited remarkably differing thermoregulatory behaviour at the nest. On average, P. gallicus tolerated a thoracic temperature up to ~41 °C, whereas P. dominula already tried at ~37 °C to keep the thorax below ambient temperature. We suggest this to be an adaptation to the higher mean ambient temperature we measured at the nest during a breeding season. Although we determined for P. dominula a 0.5 °C larger thermal tolerance range, we do not presume this parameter to be solely responsible for the successful distribution of P. dominula. Additional factors, such as the thermal tolerance of the queens could limit the overwintering success of P. gallicus in a harsher climate.


Assuntos
Adaptação Fisiológica , Vespas/fisiologia , Animais , Metabolismo Basal , Temperatura Corporal , Dióxido de Carbono/metabolismo , Clima , Feminino , Itália , Temperatura
10.
PLoS One ; 11(5): e0154521, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27167514

RESUMO

Recent studies have reported incipient morphological caste dimorphism in the Van der Vecht organ size of some temperate Polistes paper wasps. Whether species other than the temperate ones show a similar pattern remains elusive. Here, we have studied some Neotropical Polistes species. By comparing females collected through the year, we showed caste related differences in the size of the Van der Vecht organ in P. ferreri (body size corrected Van der Vech organ size of queens = 0.45 ± 0.06, workers = 0.38 ± 0.07 mm2, p = 0.0021), P. versicolor (body size corrected Van der Vech organ size of queens = 0.54 ± 0.11, workers = 0.46 ± 0.09 mm2, p = 0.010), but not P. simillimus (body size corrected Van der Vech organ size of queens = 0.52 ± 0.05, workers = 0.49 ± 0.06 mm2, p = 0.238). Therefore, it seems that queens and workers of some Neotropical Polistes have diverged in their ontogenic trajectory of the Van der Vecht organ size, providing clear evidence for incipient morphological caste dimorphism. As Polistes are distributed mostly in the tropics, we propose that physical caste differences may be widespread in the genus. Also, we highlight that morphological divergence in the queen-worker phenotypes may have started through differential selection of body structures, like the Van der Vecht organ.


Assuntos
Estruturas Animais/anatomia & histologia , Comportamento Animal/fisiologia , Hierarquia Social , Comportamento Social , Clima Tropical , Vespas/anatomia & histologia , Vespas/fisiologia , Estruturas Animais/citologia , Animais , Tamanho Corporal , Feminino , Modelos Lineares , Tamanho do Órgão
11.
Arthropod Struct Dev ; 43(5): 457-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24797151

RESUMO

In the wasp venom apparatus, the convoluted gland is the tract of the thin secretory unit, i.e. filament, contained in the muscular reservoir. Previous transmission electron microscope investigation on Stenogastrinae disclosed that the free filaments consist of distal and proximal tracts, from/to the venom reservoir, characterized by class 3 and 2 gland patterns, respectively. This study aims to extend the ultrastructural analysis to the convoluted tract, in order to provide a thorough, subcellular representation of the venom gland in these Asian wasps. Our findings showed that the convoluted gland is a continuation of the proximal tract, with secretory cells provided with a peculiar apical invagination, the extracellular cavity, collecting their products. This compartment holds a simple end-apparatus lined by large and ramified microvilli that contribute to the processing of the secretory product. A comparison between previous and present findings reveals a noticeable regionalization of the stenogastrine venom filaments and suggests that the secretory product acquires its ultimate composition in the convoluted tract.


Assuntos
Glândulas Exócrinas/ultraestrutura , Vespas/ultraestrutura , Animais , Feminino , Malásia , Microscopia Eletrônica de Transmissão , Venenos de Vespas/metabolismo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA