Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 31(17): 1738-1753, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971956

RESUMO

Medulloblastoma is the most common solid primary brain tumor in children. Remarkable advancements in the understanding of the genetic and epigenetic basis of these tumors have informed their recent molecular classification. However, the genotype/phenotype correlation of the subgroups remains largely uncharacterized. In particular, the metabolic phenotype is of great interest because of its druggability, which could lead to the development of novel and more tailored therapies for a subset of medulloblastoma. p73 plays a critical role in a range of cellular metabolic processes. We show overexpression of p73 in a proportion of non-WNT medulloblastoma. In these tumors, p73 sustains cell growth and proliferation via regulation of glutamine metabolism. We validated our results in a xenograft model in which we observed an increase in survival time in mice on a glutamine restriction diet. Notably, glutamine starvation has a synergistic effect with cisplatin, a component of the current medulloblastoma chemotherapy. These findings raise the possibility that glutamine depletion can be used as an adjuvant treatment for p73-expressing medulloblastoma.


Assuntos
Neoplasias Cerebelares/dietoterapia , Neoplasias Cerebelares/fisiopatologia , Glutamina/metabolismo , Meduloblastoma/dietoterapia , Meduloblastoma/fisiopatologia , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Glutaminase/genética , Glutaminase/metabolismo , Xenoenxertos , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Resultado do Tratamento , Células Tumorais Cultivadas
2.
BMC Biotechnol ; 22(1): 29, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221128

RESUMO

BACKGROUND: In the search for methods to biodegrade recalcitrant compounds, the use of saprotrophic fungi and white rot fungi, in particular belonging to the phylum Basidiomycota, has gained interest. This group of fungi possesses a battery of unspecific extracellular enzymes that can be utilized in the biodegradation of preferably phenolic compounds. In this work, it was investigated under which conditions the white rot fungus Trametes versicolor and the ericoid mycorrhizal fungus Rhizoscyphus ericae (belonging to the phylum Ascomycota) could be used to biodegrade the antibiotic aminoglycoside neomycin at co-metabolic conditions in which external nutrients were supplied. Furthermore, it was also investigated whether a biodegradation could be accomplished using neomycin as the sole nutrient. RESULTS: The results show that both species can biodegrade neomycin 70% under co-metabolic conditions during a one-week time course and that Rhizoscyphus ericae is able to use neomycin as sole nutrient and to approximatively biodegrade it 60% under chosen non co-metabolic conditions. At selected conditions, the biodegradation of neomycin using Rhizoscyphus ericae was monitored by oxidation products of D-ribose which is a hydrolysis product of neomycin. CONCLUSION: The results are of general interest in the search for fungal species that can biodegrade recalcitrant compounds without the need of external nutrients. The key future application area that will be investigated is purification of waste from recombinant protein production in which neomycin, nutrients and E. coli with neomycin resistance genes are present.


Assuntos
Micorrizas , Antibacterianos/metabolismo , Ascomicetos , Biodegradação Ambiental , Escherichia coli , Micorrizas/metabolismo , Neomicina/metabolismo , Proteínas Recombinantes/metabolismo , Ribose/metabolismo , Trametes
3.
Artigo em Inglês | MEDLINE | ID: mdl-35583106

RESUMO

The presence of antibiotic resistance genes in wastewater treatment plants (WWTPs), and in river and lake recipients show the need to develop new antibiotic removal strategies. The aminoglycoside antibiotic class is of special concern since the chemical structure of these compounds limits the choices of removal technologies. The experimental design included fungal mediated in vivo and in vitro experiments. The experiments were performed in Erlenmeyer flasks under non-sterile conditions. In the study, the role of the laccase redox mediator 4-hydroxy benzoic acid (HBA) in the removal of neomycin was investigated. The specific objective of the study was to conclude whether it is possible to use the white rot fungus (WRF) Trametes versicolor to biodegrade neomycin. It was shown that it is feasible to remove 34% neomycin in vitro (excluding living fungal cells) by laccase-HBA mediated extracellular biodegradation. In the in vivo experiments, polyurethane foam (PUF) was used as supporting material to immobilize fungal mycelia on. The presence of living fungal cells facilitated a removal of approximately 80% neomycin in the absence of HBA. Using liquid chromatography-high resolution-mass spectrometry, it was possible to tentatively identify oxidation products of neomycin hydrolysates. The results in this study open up the possibility to implement a pretreatment plant (PTP) aimed for neomycin removal.


Assuntos
Lacase , Trametes , Antibacterianos/metabolismo , Biodegradação Ambiental , Lacase/metabolismo , Neomicina , Polyporaceae , Trametes/metabolismo
4.
Metabolomics ; 16(1): 12, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31925559

RESUMO

INTRODUCTION: The abuse of anabolic androgenic steroids (AASs) is a source of public concern because of their adverse effects. Supratherapeutic doses of AASs are known to be hepatotoxic and regulate the lipoproteins in plasma by modifying the metabolism of lipids in the liver, which is associated with metabolic diseases. However, the effect of AASs on the profile of lipids in plasma is unknown. OBJECTIVES: To describe the changes in the plasma lipidome exerted by AASs and to discuss these changes in the light of previous research about AASs and de novo lipogenesis in the liver. METHODS: We treated male Wistar rats with supratherapeutic doses of nandrolone decanoate and testosterone undecanoate. Subsequently, we isolated the blood plasma and performed lipidomics analysis by liquid chromatography-high resolution mass spectrometry. RESULTS: Lipid profiling revealed a decrease of sphingolipids and glycerolipids with palmitic, palmitoleic, stearic, and oleic acids. In addition, lipid profiling revealed an increase in free fatty acids and glycerophospholipids with odd-numbered chain fatty acids and/or arachidonic acid. CONCLUSION: The lipid profile presented herein reports the imprint of AASs on the plasma lipidome, which mirrors the downregulation of de novo lipogenesis in the liver. In a broader perspective, this profile will help to understand the influence of androgens on the lipid metabolism in future studies of diseases with dysregulated lipogenesis (e.g. type 2 diabetes, fatty liver disease, and hepatocellular carcinoma).


Assuntos
Lipídeos/sangue , Lipogênese , Fígado/efeitos dos fármacos , Decanoato de Nandrolona/farmacologia , Congêneres da Testosterona/farmacologia , Testosterona/análogos & derivados , Animais , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Testosterona/farmacologia
5.
Metabolomics ; 15(10): 138, 2019 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-31587113

RESUMO

INTRODUCTION: Noise-induced hearing loss (NIHL) is an increasing problem in society and accounts for a third of all cases of acquired hearing loss. NIHL is caused by formation of reactive oxygen species (ROS) in the cochlea causing oxidative stress. Hydrogen gas (H2) can alleviate the damage caused by oxidative stress and can be easily administered through inhalation. OBJECTIVES: To present a protocol for untargeted metabolomics of guinea pig perilymph and investigate the effect of H2 administration on the perilymph metabolome of noise exposed guinea pigs. METHODS: The left ear of guinea pigs were exposed to hazardous impulse noise only (Noise, n = 10), noise and H2 (Noise + H2, n = 10), only H2 (H2, n = 4), or untreated (Control, n = 2). Scala tympani perilymph was sampled from the cochlea of both ears. The polar component of the perilymph metabolome was analyzed using a HILIC-UHPLC-Q-TOF-MS-based untargeted metabolomics protocol. Multivariate data analysis (MVDA) was performed separately for the exposed- and unexposed ear. RESULTS: MVDA allowed separation of groups Noise and Noise + H2 in both the exposed and unexposed ear and yielded 15 metabolites with differentiating relative abundances. Seven were found in both exposed and unexposed ear data and included two osmoprotectants. Eight metabolites were unique to the unexposed ear and included a number of short-chain acylcarnitines. CONCLUSIONS: A HILIC-UHPLC-Q-TOF-MS-based protocol for untargeted metabolomics of perilymph is presented and shown to be fit-for-purpose. We found a clear difference in the perilymph metabolome of noise exposed guinea pigs with and without H2 treatment.


Assuntos
Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Gases/farmacologia , Hidrogênio/farmacologia , Metabolômica/métodos , Ruído , Perilinfa/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Cóclea/química , Cobaias , Espectrometria de Massas , Perilinfa/química , Perilinfa/efeitos dos fármacos , Controle de Qualidade , Software
6.
Anal Bioanal Chem ; 411(17): 3919-3928, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104085

RESUMO

In this study, a special interest was focused on the stability of diazepam and nordiazepam in aqueous samples at acidic and neutral pH. The aim of the study was to isolate and illustrate one of the many possible sources of error that can be encountered when developing and validating analytical methods. This can be of particular importance when developing multi-analyte methods where there is limited time to scrutinize the behavior of each analyte. A method was developed for the analysis of the benzodiazepines diazepam and nordiazepam in treated wastewater. The samples were extracted by solid phase extraction, using SPEC C18AR cartridges, and analyzed by the use of liquid chromatography, with a C18 stationary phase, coupled to tandem mass spectrometry. Environmental water samples are often acidified during storage to reduce the microbial degradation of the target compounds and to preserve the sample. In some cases, the samples are acidified before extraction. In this study, it was found that a chemical equilibrium between nordiazepam and a transformation product could cause inaccurately high extraction recovery values when the samples were stored at low sample pH. The stability of nordiazepam was shown to be low at pH 3. Within 12 days, 20% of the initial concentration of nordiazepam was transformed. Interestingly, the transformed nordiazepam was shown to be regenerated and reformed to nordiazepam during sample handling. At a sample pH of 7, diazepam and nordiazepam were stable for 12 days. It was concluded that great care must be taken when acidifying water samples containing nordiazepam during storage or extraction. The storage and the extraction should be conducted at neutral pH if no internal standard is used to compensate for degradation and conversion of nordiazepam. The developed method was validated in treated wastewater and applied for the quantification of diazepam and nordiazepam in treated wastewater samples.


Assuntos
Ácidos/química , Cromatografia Líquida/métodos , Diazepam/química , Nordazepam/química , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Limite de Detecção , Extração em Fase Sólida/métodos
7.
Amino Acids ; 49(5): 905-919, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28161796

RESUMO

ß-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.


Assuntos
Alanina/metabolismo , Diamino Aminoácidos/toxicidade , Ácido Aspártico/metabolismo , Citotoxinas/toxicidade , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Toxinas de Cianobactérias , Relação Dose-Resposta a Droga , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma , Neurônios/citologia , Neurônios/metabolismo , Análise de Componente Principal , Taurina/metabolismo , Tretinoína/farmacologia , Ácido gama-Aminobutírico/metabolismo
8.
J Chem Inf Model ; 54(11): 3251-8, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25321343

RESUMO

Drug-induced changes in mammalian cell line models have already been extensively profiled at the systemic mRNA level and subsequently used to suggest mechanisms of action for new substances, as well as to support drug repurposing, i.e., identifying new potential indications for drugs already licensed for other pharmacotherapy settings. The seminal work in this field, which includes a large database and computational algorithms for pattern matching, is known as the "Connectivity Map" (CMap). However, the potential of similar exercises at the metabolite level is still largely unexplored. Only recently, the first high-throughput metabolomic assay pilot study was published, which involved screening the metabolic response to a set of 56 kinase inhibitors in a 96-well format. Here, we report results from a separately developed metabolic profiling assay, which leverages (1)H NMR spectroscopy to the quantification of metabolic changes in the HCT116 colorectal cancer cell line, in response to each of 26 compounds. These agents are distributed across 12 different pharmacological classes covering a broad spectrum of bioactivity. Differential metabolic profiles, inferred from multivariate spectral analysis of 18 spectral bins, allowed clustering of the most-tested drugs, according to their respective pharmacological class. A more-advanced supervised analysis, involving one multivariate scattering matrix per pharmacological class and using only 3 spectral bins (3 metabolites), showed even more distinct pharmacology-related cluster formations. In conclusion, this type of relatively fast and inexpensive profiling seems to provide a promising alternative to that afforded by mRNA expression analysis, which is relatively slow and costly. As also indicated by the present pilot study, the resulting metabolic profiles do not seem to provide as information-rich signatures as those obtained using systemic mRNA profiling, but the methodology holds strong promise for significant refinement.


Assuntos
Descoberta de Drogas/métodos , Metaboloma/efeitos dos fármacos , Gráficos por Computador , Células HCT116 , Humanos , Espectroscopia de Ressonância Magnética
9.
Anal Chim Acta ; 1316: 342811, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969401

RESUMO

BACKGROUND: Lipids such as phosphatidic acids (PAs) and cardiolipins (CLs) present strongly tailing peaks in reversed phase liquid chromatography, which entails low detectability. They are usually analyzed by hydrophilic interaction liquid chromatography (HILIC), which hampers high-throughput lipidomics. Thus, there is a great need for improved analytical methods in order to obtain a broader coverage of the lipidome in a single chromatographic method. We investigated the effect of ammonium bicarbonate (ABC) on peak asymmetry and detectability, in comparison with ammonium formate (AFO) on both a conventional BEH C18 column and an HST-CSH C18 column. RESULTS: The combination of 2.5 mM ABC buffer pH 8 with an HST-CSH C18 column produced significantly improved results, reducing the asymmetry factor at 10 % peak height of PA 16:0/18:1 from 8.4 to 1.6. Furthermore, on average, there was up to a 54-fold enhancement in the peak height of its [M - H]- ion compared to AFO and the BEH C18 column. We confirmed this beneficial effect on other strongly tailing lipids, with accessible phosphate moieties e.g., cardiolipins, phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, phosphorylated ceramide and phosphorylated sphingosine. Furthermore, we found an increased detectability of phospho- and sphingolipids up to 28 times in negative mode when using an HST-CSH C18 column. The method was successfully applied to mouse liver samples, where previously undetected endogenous phospholipids could be analyzed with improved chromatographic separation. SIGNIFICANCE: In conclusion, the use of 2.5 mM ABC substantially improved the peak shape of PAs and enhanced the detectability of the lipidome in negative mode on an RPLC-ESI-Q-TOF-MS system on both BEH C18 and HST-CSH C18 columns. This method provides a wider coverage of the lipidome with one single injection for future lipidomic applications in negative mode.


Assuntos
Bicarbonatos , Animais , Camundongos , Soluções Tampão , Bicarbonatos/química , Lipídeos/química , Cromatografia de Fase Reversa/métodos , Propriedades de Superfície , Lipidômica/métodos , Camundongos Endogâmicos C57BL , Interações Hidrofóbicas e Hidrofílicas , Ácidos Fosfatídicos/química , Fígado/química
10.
Electrophoresis ; 34(24): 3252-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123115

RESUMO

The most common method to determine the EOF in CE is to measure the migration time for a neutral marker. In this study, 12 compounds (three novel and some previously used) were investigated as EOF markers in aqueous and nonaqueous BGEs. In the aqueous buffer systems (ammonium acetate, sodium phosphate, and sodium borate) the evaluation included a wide pH range (2-12). Two BGEs contained chiral selectors (sulphated-ß-CD, (-)-diketogulonic acid) and one that contained a micellar agent (SDS) were included in the study. The majority of the evaluated compounds were found to migrate with the EOF in the water-based BGEs and are thus useful as EOF markers. However, in the SDS-based BGE only four of the compounds (acetone, acrylamide, DMSO, and ethanol) were found to be applicable. In the nonaqueous BGEs 11 markers (acetone, acetophenone, acrylamide, anthracene, benzene, 4-(4-methoxybenzylamino)-7-nitro-2,1,3-benzoxadiazole, benzyl alcohol, 2,5-diphenyloxazole, ethanol, flavone, and mesityl oxide) seemed to be functional as EOF markers. Even though several of the evaluated compounds can be used as EOF markers in the investigated BGEs, the authors would recommend the use of acrylamide as a general marker for UV detection. Furthermore, the four fluorescent markers (of which three were novel) gave RSD values equal to the other markers and can be used for the determination of the EOF in CE or microchip CE with fluorescence detection.


Assuntos
Eletro-Osmose/métodos , Eletroforese Capilar/métodos , Acrilamida , Boratos , Soluções Tampão , Eletrólitos , Corantes Fluorescentes/química , Corantes Fluorescentes/isolamento & purificação , Concentração de Íons de Hidrogênio , Compostos Orgânicos/química , Compostos Orgânicos/isolamento & purificação , Concentração Osmolar
11.
Artigo em Inglês | MEDLINE | ID: mdl-37972465

RESUMO

Selective androgen receptor modulators (SARMs) such as ACP-105 are prohibited in sports due to their anabolic properties. ACP-105 has in previous equine studies shown to undergo extensive metabolism, which makes its metabolite profile important to investigate in humans, since the metabolism is unknown in this species. The aims of the study were to systematically optimize in vitro microsome incubations for improved metabolite yield and to utilize a multivariate data analysis (MVDA) approach to aid the metabolite discovery. Microsomes together with S9 fractions were used at optimal conditions, both with and without phase II additives. Furthermore, the relevance of the in vitro derived metabolites was evaluated as analytical targets in doping control by comparison with results from a human post-administration urine sample collected after a single dose of 100 µg ACP-105. All samples were analyzed with liquid chromatography - Orbitrap mass spectrometry. The use of the systematical optimization and MVDA greatly simplified the search and a total of 18 in vitro metabolites were tentatively identified. The yield of the two main monohydroxylated isomers increased by 24 and 10 times, respectively. In the human urine sample, a total of seven metabolites of ACP-105, formed by a combination of hydroxylations and glucuronic acid conjugations, were tentatively identified. The main metabolites were two monohydroxylated forms that are suggested as analytical targets for human doping control after hydrolysis. All the in vivo metabolites could be detected with the MVDA approach on the in vitro models, demonstrating its usefulness for prediction of the in vivo metabolite profile.


Assuntos
Androgênios , Dopagem Esportivo , Humanos , Animais , Cavalos , Androgênios/análise , Compostos Azabicíclicos , Microssomos/metabolismo , Detecção do Abuso de Substâncias/métodos
12.
J Pharm Biomed Anal ; 233: 115468, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37224728

RESUMO

LGD-3303 is a Selective Androgen Receptor Modulator (SARM) that is prohibited in both equine and human sports due to its anabolic properties. The aim of this study was to investigate the equine in vivo metabolite profile of LGD-3303 and identify drug metabolites that can be suitable as new and improved analytical targets for equine doping control. This was performed by an oral administration of 0.05 mg·kg-1 LGD-3303 to horses, where blood and urine samples were collected up to 96 h after administration. The in vivo samples consisting of plasma, urine and hydrolyzed urine were analyzed utilizing ultra-high performance liquid chromatography hyphenated to a Q Exactive™ Orbitrap™ high resolution mass spectrometer with a heated electrospray ionization source. A total of eight metabolites of LGD-3303 were tentatively identified, including one carboxylated and several hydroxylated metabolites in combination with glucuronic acid conjugates. A monohydroxylated metabolite is suggested as an analytical target for doping control analysis of plasma and urine after hydrolysis with ß-glucuronidase, due to the high intensity and prolonged detection time in comparison to parent LGD-3303.


Assuntos
Dopagem Esportivo , Animais , Androgênios/urina , Dopagem Esportivo/prevenção & controle , Cavalos , Receptores Androgênicos/metabolismo , Detecção do Abuso de Substâncias/métodos
13.
Metabolites ; 12(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35208212

RESUMO

LC-MS-based untargeted metabolomics is heavily dependent on algorithms for automated peak detection and data preprocessing due to the complexity and size of the raw data generated. These algorithms are generally designed to be as inclusive as possible in order to minimize the number of missed peaks. This is known to result in an abundance of false positive peaks that further complicate downstream data processing and analysis. As a consequence, considerable effort is spent identifying features of interest that might represent peak detection artifacts. Here, we present the CPC algorithm, which allows automated characterization of detected peaks with subsequent filtering of low quality peaks using quality criteria familiar to analytical chemists. We provide a thorough description of the methods in addition to applying the algorithms to authentic metabolomics data. In the example presented, the algorithm removed about 35% of the peaks detected by XCMS, a majority of which exhibited a low signal-to-noise ratio. The algorithm is made available as an R-package and can be fully integrated into a standard XCMS workflow.

14.
Sci Rep ; 12(1): 3356, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233042

RESUMO

Marine sponges (phylum Porifera) are leading organisms for the discovery of bioactive compounds from nature. Their often rich and species-specific microbiota is hypothesised to be producing many of these compounds. Yet, environmental influences on the sponge-associated microbiota and bioactive compound production remain elusive. Here, we investigated the changes of microbiota and metabolomes in sponges along a depth range of 1232 m. Using 16S rRNA gene amplicon sequencing and untargeted metabolomics, we assessed prokaryotic and chemical diversities in three deep-sea sponge species: Geodia barretti, Stryphnus fortis, and Weberella bursa. Both prokaryotic communities and metabolome varied significantly with depth, which we hypothesized to be the effect of different water masses. Up to 35.5% of microbial ASVs (amplicon sequence variants) showed significant changes with depth while phylum-level composition of host microbiome remained unchanged. The metabolome varied with depth, with relative quantities of known bioactive compounds increasing or decreasing strongly. Other metabolites varying with depth were compatible solutes regulating osmolarity of the cells. Correlations between prokaryotic community and the bioactive compounds in G. barretti suggested members of Acidobacteria, Proteobacteria, Chloroflexi, or an unclassified prokaryote as potential producers.


Assuntos
Microbiota , Poríferos , Animais , Metaboloma , Microbiota/genética , Filogenia , Poríferos/microbiologia , Células Procarióticas , RNA Ribossômico 16S/genética
15.
Metabolites ; 11(5)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063084

RESUMO

In order to increase metabolite coverage in LC-MS-based untargeted metabolomics, HILIC- and RPLC-mode separations are often combined. Unfortunately, these two techniques pose opposite requirements on sample composition, necessitating either dual sample preparations, increasing needed sample volume, or manipulation of the samples after the first analysis, potentially leading to loss of analytes. When sample material is precious, the number of analyses that can be performed is limited. To that end, an automated single-injection LC-MS method for sequential analysis of both the hydrophilic and lipophilic fractions of biological samples is described. Early eluting compounds in a HILIC separation are collected on a trap column and subsequently analyzed in the RPLC mode. The instrument configuration, composed of commercially available components, allows easy modulation of the dilution ratio of the collected effluent, with sufficient dilution to obtain peak compression in the RPLC column. Furthermore, the method is validated and shown to be fit for purpose for application in untargeted metabolomics. Repeatability in both retention times and peak areas was excellent across over 140 injections of protein-precipitated blood plasma. Finally, the method has been applied to the analysis of real perilymph samples collected in a guinea pig model. The QC sample injections clustered tightly in the PCA scores plot and showed a high repeatability in both retention times and peak areas for selected compounds.

16.
Metabolites ; 11(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804267

RESUMO

Inorganic ions, such as sodium and potassium, are present in all biological matrices and are sometimes also added during sample preparation. However, these inorganic ions are known to hamper electrospray ionization -mass spectrometry (ESI-MS) applications, especially in hydrophilic interaction liquid chromatography (HILIC) where they are retained and can be detected as adducts and clusters with mobile phase components or analytes. The retention of inorganic ions leads to co-elution with analytes and as a result ion-suppression, extensive adduct formation and problems with reproducibility. In the presented work, a sample preparation method using cation exchange solid phase extraction (SPE) was developed to trap Na+ and K+ ions from human blood plasma and head and neck cancer cells for the analysis of small cationic, anionic as well as neutral organic analytes. The investigated analytes were small, hydrophilic compounds typically in focus in metabolomics studies. The samples were analyzed using full-scan HILIC-ESI-quadrupole time of flight (QTOF)-MS with an untargeted, screening approach. Method performance was evaluated using multivariate data analysis as well as relative quantifications, spiking of standards to evaluate linearity of response and post-column infusion to study ion-suppression. In blood plasma, the reduction of sodium and potassium ion concentration resulted in improved sensitivity increased signal intensity for 19 out of 28 investigated analytes, improved linearity of response, reduced ion-suppression and reduced cluster formation as well as adduct formation. Thus, the presented method has significant potential to improve data quality in metabolomics studies.

17.
Front Chem ; 9: 662659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041223

RESUMO

Geodia barretti is a deep-sea marine sponge common in the north Atlantic and waters outside of Norway and Sweden. The sampling and subsequent treatment as well as storage of sponges for metabolomics analyses can be performed in different ways, the most commonly used being freezing (directly upon collection or later) or by storage in solvent, commonly ethanol, followed by freeze-drying. In this study we therefore investigated different sampling protocols and their effects on the detected metabolite profiles in liquid chromatography-mass spectrometry (LC-MS) using an untargeted metabolomics approach. Sponges (G. barretti) were collected outside the Swedish west coast and pieces from three sponge specimens were either flash frozen in liquid nitrogen, frozen later after the collection cruise, stored in ethanol or stored in methanol. The storage solvents as well as the actual sponge pieces were analyzed, all samples were analyzed with hydrophilic interaction liquid chromatography as well as reversed phase liquid chromatography with high resolution mass spectrometry using full-scan in positive and negative ionization mode. The data were evaluated using multivariate data analysis. The highest metabolite intensities were found in the frozen samples (flash frozen and frozen after sampling cruise) as well as in the storage solvents (methanol and ethanol). Metabolites extracted from the sponge pieces that had been stored in solvent were found in very low intensity, since the majority of metabolites were extracted to the solvents to a high degree. The exception being larger peptides and some lipids. The lowest variation between replicates were found in the flash frozen samples. In conclusion, the preferred method for sampling of sponges for metabolomics was found to be immediate freezing in liquid nitrogen. However, freezing the sponge samples after some time proved to be a reliable method as well, albeit with higher variation between the replicates. The study highlights the importance of saving ethanol extracts after preservation of specimens for biology studies; these valuable extracts could be further used in studies of natural products, chemosystematics or metabolomics.

18.
Metabolites ; 11(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535528

RESUMO

Selective Androgen Receptor Modulators (SARMs) have anabolic properties but less adverse effects than anabolic androgenic steroids. They are prohibited in both equine and human sports and there have been several cases of SARMs findings reported over the last few years. The aim of this study was to investigate the metabolite profile of the SARM ACP-105 (2-chloro-4-[(3-endo)-3-hydroxy-3-methyl-8-azabicyclo[3.2.1]oct-8-yl]-3-methylbenzonitrile) in order to find analytical targets for doping control. Oral administration of ACP-105 was performed in horses, where blood and urine samples were collected over a time period of 96 h. The in vivo samples were compared with five in vitro incubation models encompassing Cunninghamella elegans, microsomes and S9 fractions of both human and equine origin. The analyses were performed using ultra-high performance liquid chromatography coupled to high resolution Q ExactiveTM OrbitrapTM mass spectrometry (UHPLC-HRMS). A total of 21 metabolites were tentatively identified from the in vivo experiments, of which several novel glucuronides were detected in plasma and urine. In hydrolyzed urine, hydroxylated metabolites dominated. The in vitro models yielded several biotransformation products, including a number of monohydroxylated metabolites matching the in vivo results. The suggested analytical target for equine doping control in plasma is a dihydroxylated metabolite with a net loss of two hydrogens. In urine, the suggested targets are two monohydroxylated metabolites after hydrolysis with ß-glucuronidase, selected both due to prolongation of the detection time and the availability of reference material from the in vitro models.

19.
Electrophoresis ; 31(10): 1706-12, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20414882

RESUMO

Divalent dipeptides have been introduced as counter ions in aqueous CZE. The dipeptides form ion pairs with amino alcohols in the BGE and facilitate the separation of amino alcohols. High concentrations of dipeptide caused reversed effective mobility for the analytes. The net charge of the dipeptide can be controlled using a buffer or a strong base, and regulates the interaction between the dipeptide and the amino alcohol. A stronger interaction and higher selectivity of amino alcohols was observed when the dipeptides were used as divalent counter ions, than in monovalent or uncharged form. Association constants for ion pairs between divalent dipeptides and amino alcohols can be used to enhance selectivity for amino alcohols in CZE. No chiral separation of amino alcohols was observed when using the dipeptides as ion-pairing chiral selectors in aqueous BGE, but addition of methanol to the BGE promoted enantioselectivity.


Assuntos
Amino Álcoois/isolamento & purificação , Dipeptídeos/química , Eletroforese Capilar/métodos , Amino Álcoois/química , Concentração de Íons de Hidrogênio , Estereoisomerismo , Timolol/química
20.
Pharm Res ; 27(7): 1309-17, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20358263

RESUMO

PURPOSE: To evaluate the usefulness of a miniaturized rotating disk equipment for the determination of factors influencing the in vitro dissolution rate, G, of a model basic drug substance (terfenadine) in different aqueous media, using experimental design and multivariate data analysis. The apparent solubility, S, was included in the chemometric study. METHODS: The dissolution rate was determined with a miniaturized rotating disk apparatus and the solubility by shake-flask methodology. Media were based on acetate, phosphate or maleate buffers-the latter used in fasted state simulated intestinal fluid (FaSSIF-V2). The chemometric analyses included fractional factorial design, principal component analysis (PCA) and orthogonal partial least squares (OPLS). Quantifications were made with a RP-HPLC-DAD system. RESULTS: The most influential factor for both G and S of terfenadine in the different media was pH. Apart from the ionic strength and sodium chloride concentration in the acetate medium, the effects of the other variables were insignificant, implying no wetting effect of the surfactants. CONCLUSIONS: The miniaturized rotating disk equipment was suitable to use, in conjunction with the chemometric analyses, in the evaluation of the factors affecting the in vitro dissolution rate. The apparent solubility was found to be influenced by the same factors as G.


Assuntos
Modelos Biológicos , Terfenadina/química , Água/química , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Concentração de Íons de Hidrogênio , Miniaturização , Análise Multivariada , Preparações Farmacêuticas/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA