Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Immunol Res ; 2022: 6061746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528618

RESUMO

In paradox to critical functions for T-cell selection and self-tolerance, the thymus undergoes profound age-associated atrophy and loss of T-cell function, further enhanced by cancer therapies. Identifying thymic epithelial progenitor populations capable of forming functional thymic tissue will be critical in understanding thymic epithelial cell (TEC) ontogeny and designing strategies to reverse involution. We identified a new population of progenitor cells, present in both the thymus and bone marrow (BM) of mice, that coexpress the hematopoietic marker CD45 and the definitive thymic epithelial marker EpCAM and maintain the capacity to form functional thymic tissue. Confocal analysis and qRT-PCR of sorted cells from both BM and thymus confirmed coexpression of CD45 and EpCAM. Grafting of C57BL/6 fetal thymi under the kidney capsule of H2BGFP transgenic mice revealed that peripheral CD45+ EpCAM+ GFP-expressing cells migrate into the developing thymus and contribute to both TECs and FSP1-expressing thymic stroma. Sorted BM-derived CD45+ EpCAM+ cells contribute to reaggregate thymic organ cultures (RTOCs) and differentiate into keratin and FoxN1-expressing TECs, demonstrating that BM cells can contribute to the maintenance of TEC microenvironments previously thought to be derived solely from endoderm. BM-derived CD45+ EpCAM+ cells represent a new source of progenitor cells that contribute to thymic homeostasis. Future studies will characterize the contribution of BM-derived CD45+ EpCAM+ TEC progenitors to distinct functional TEC microenvironments in both the steady-state thymus and under conditions of demand. Cell therapies utilizing this population may help counteract thymic involution in cancer patients.


Assuntos
Medula Óssea , Células Epiteliais , Animais , Molécula de Adesão da Célula Epitelial/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco , Timo
2.
Ethn Dis ; 29(Suppl 1): 135-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906162

RESUMO

The Research Centers in Minority Institutions (RCMI) program was established by the US Congress to support the development of biomedical research infrastructure at minority-serving institutions granting doctoral degrees in the health professions or in a health-related science. RCMI institutions also conduct research on diseases that disproportionately affect racial and ethnic minorities (ie, African Americans/Blacks, American Indians and Alaska Natives, Hispanics, Native Hawaiians and Other Pacific Islanders), those of low socioeconomic status, and rural persons. Quantitative metrics, including the numbers of doctoral science degrees granted to underrepresented students, NIH peer-reviewed research funding, peer-reviewed publications, and numbers of racial and ethnic minorities participating in sponsored research, demonstrate that RCMI grantee institutions have made substantial progress toward the intent of the Congressional legislation, as well as the NIH/NIMHD-linked goals of addressing workforce diversity and health disparities. Despite this progress, nationally, many challenges remain, including persistent disparities in research and career development awards to minority investigators. The continuing underrepresentation of minority investigators in NIH-sponsored research across multiple disease areas is of concern, in the face of unrelenting national health inequities. With the collaborative network support by the RCMI Translational Research Network (RTRN), the RCMI community is uniquely positioned to address these challenges through its community engagement and strategic partnerships with non-RCMI institutions. Funding agencies can play an important role by incentivizing such collaborations, and incorporating metrics for research funding that address underrepresented populations, workforce diversity and health equity.


Assuntos
Pesquisa Comportamental , Pesquisa Biomédica , Grupos Minoritários , Saúde das Minorias , Pesquisa Translacional Biomédica , Pesquisa Comportamental/métodos , Pesquisa Comportamental/organização & administração , Pesquisa Biomédica/métodos , Pesquisa Biomédica/organização & administração , Diversidade Cultural , Etnicidade/educação , Etnicidade/estatística & dados numéricos , Disparidades nos Níveis de Saúde , Humanos , Grupos Minoritários/educação , Grupos Minoritários/estatística & dados numéricos , Saúde das Minorias/educação , Saúde das Minorias/etnologia , Pesquisadores , Apoio à Pesquisa como Assunto , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/organização & administração , Estados Unidos , Recursos Humanos
3.
Exp Biol Med (Maywood) ; 232(6): 780-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17526770

RESUMO

This study examines thymic nurse cell (TNC) function during T-cell development. It has been suggested that TNCs function in the removal of nonfunctional and/or apoptotic thymocytes and do not participate in major histocompatibility complex restriction. We analyzed TNCs isolated from both normal C57BL/6 mice and C57BL/6 TgN (TCRHY) mice (HY-TCR transgenic mice). Using confocal microscopic analyses of TNCs isolated from C57BL/6 animals, we showed that 75%-78% of the enclosed thymocyte subset was viable, and 87%-90% of these cells expressed both CD4 and CD8. CD4 and CD8 also were expressed on TNC thymocytes isolated from both male and female HY-TCR transgenic mice. The transgenic female thymus was shown to have 17 times more TNCs per milligram of thymus than the transgenic male thymus. TNCs from HY-TCR transgenic females were 8-10 microm larger than transgenic male TNCs, and the female TNCs contained five times more thymocytes within intracytoplasmic vacuoles, with less than 4% apoptosis. However, more than 42% of the thymocytes within transgenic male TNCs were apoptotic. The large number and size of TNCs containing viable thymocytes in the female transgenic thymus suggest that TNC function is not limited to the removal of apoptotic thymocytes. We believe that the selective uptake of viable double-positive thymocytes by TNCs in C57BL/6 and HY-TCR transgenic female mice provides evidence that this interaction occurs during the process of major histocompatibility complex restriction.


Assuntos
Camundongos Transgênicos/imunologia , Linfócitos T/citologia , Timo/citologia , Animais , Antígenos CD4/imunologia , Antígenos CD8/imunologia , Feminino , Antígeno H-Y/genética , Marcação In Situ das Extremidades Cortadas , Complexo Principal de Histocompatibilidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/genética , Tolerância a Antígenos Próprios , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia
4.
Int Rev Cytol ; 223: 1-37, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12641209

RESUMO

Thymic nurse cells (TNCs) represent a unique microenvironment in the thymus for MHC restriction and T cell repertoire selection composed of a cortical epithelial cell surrounding 20-200 immature thymocytes. TNCs have been isolated from many classes of animals from fish to humans. Studies performed using TNC lines showed that TNCs bind viable alphabetaTCRlow CD4(+)CD8(+)CD69(-) thymocytes. A subset of the bound cells is internalized, proliferates within the TNC, and matures to the alphabetaTCRhigh CD4(+)CD8(+)CD69(+) stage, indicative of positive selection. A subset of the internalized population is released while cells that remain internalized undergo apoptosis and are degraded by lysosomes within the TNC. A TNC-specific monoclonal antibody added to fetal thymic organ cultures resulted in an 80% reduction in the number of thymocytes recovered, with a block at the double positive stage of development. Together these data suggest a critical role for TNC internalization in thymocyte selection as well as the removal and degradation of negatively selected thymocytes. Recent studies have shown that in addition to thymocytes, peripheral circulating macrophages are also found within the TNC complex and can present antigens to the developing thymocytes. These circulating macrophages could provide a source of self-antigens used to ensure a self-tolerant mature T cell repertoire. A reduction in TNC numbers is associated with a variety of autoimmune diseases including thyroiditis and systemic lupus erythematosis.


Assuntos
Timo/citologia , Timo/embriologia , Animais , Humanos , Macrófagos/citologia , Linfócitos T/citologia
5.
PLoS One ; 8(12): e83024, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340075

RESUMO

Thymic microenvironments are essential for the proper development and selection of T cells critical for a functional and self-tolerant adaptive immune response. While significant turnover occurs, it is unclear whether populations of adult stem cells contribute to the maintenance of postnatal thymic epithelial microenvironments. Here, the slow cycling characteristic of stem cells and their property of label-retention were used to identify a K5-expressing thymic stromal cell population capable of generating clonal cell lines that retain the capacity to differentiate into a number of mesenchymal lineages including adipocytes, chondrocytes and osteoblasts suggesting a mesenchymal stem cell-like phenotype. Using cell surface analysis both culture expanded LRCs and clonal thymic mesenchymal cell lines were found to express Sca1, PDGFRα, PDGFRß,CD29, CD44, CD49F, and CD90 similar to MSCs. Sorted GFP-expressing stroma, that give rise to TMSC lines, contribute to thymic architecture when reaggregated with fetal stroma and transplanted under the kidney capsule of nude mice. Together these results show that the postnatal thymus contains a population of mesenchymal stem cells that can be maintained in culture and suggests they may contribute to the maintenance of functional thymic microenvironments.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Timo/citologia , Animais , Antígenos Ly/metabolismo , Sequência de Bases , Diferenciação Celular , Linhagem da Célula , Transplante de Células , Feminino , Proteínas de Fluorescência Verde/metabolismo , Receptores de Hialuronatos/metabolismo , Integrina alfa6/metabolismo , Integrina beta1/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Dados de Sequência Molecular , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Linfócitos T/citologia , Antígenos Thy-1/metabolismo
6.
PLoS One ; 5(1): e8675, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20072628

RESUMO

A complete understanding of negative selection has been elusive due to the rapid apoptosis and clearance of thymocytes in vivo. We report a TCR transgenic model in which expression of the TCR during differentiation occurs only after V(D)J-like recombination. TCR expression from this transgene closely mimics expression of the endogenous TCRalpha locus allowing for development that is similar to wild type thymocytes. This model allowed us to characterize the phenotypic changes that occurred after TCR-mediated signaling in self-reactive thymocytes prior to their deletion in a highly physiological setting. Self-reactive thymocytes were identified as being immature, activated and CD4(lo)CD8(lo). These cells had upregulated markers of negative selection and were apoptotic. Elimination of Bim reduced the apoptosis of self-reactive thymocytes, but it did not rescue their differentiation and the cells remained at the immature CD4(lo)CD8(lo) stage of development. These cells upregulate Nur77 and do not contribute to the peripheral T cell repertoire in vivo. Remarkably, development past the CD4(lo)CD8(lo) stage was possible once the cells were removed from the negatively selecting thymic environment. In vitro development of these cells occurred despite their maintenance of high intracellular levels of Nur77. Therefore, in vivo, negatively selected Bim-deficient thymocytes are eliminated after prolonged developmental arrest via a Bim-independent pathway that is dependent on the thymic microenvironment. These data newly reveal a layering of immediate, Bim-dependent, and delayed Bim-independent pathways that both contribute to elimination of self-reactive thymocytes in vivo.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2 , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/citologia , Timo/metabolismo
7.
PLoS One ; 5(2): e9062, 2010 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-20161711

RESUMO

BACKGROUND: Thymic epithelial cell (TEC) microenvironments are essential for the recruitment of T cell precursors from the bone marrow, as well as the subsequent expansion and selection of thymocytes resulting in a mature self-tolerant T cell repertoire. The molecular mechanisms, which control both the initial development and subsequent maintenance of these critical microenvironments, are poorly defined. Wnt signaling has been shown to be important to the development of several epithelial tissues and organs. Regulation of Wnt signaling has also been shown to impact both early thymocyte and thymic epithelial development. However, early blocks in thymic organogenesis or death of the mice have prevented analysis of a role of canonical Wnt signaling in the maintenance of TECs in the postnatal thymus. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that tetracycline-regulated expression of the canonical Wnt inhibitor DKK1 in TECs localized in both the cortex and medulla of adult mice, results in rapid thymic degeneration characterized by a loss of DeltaNP63(+) Foxn1(+) and Aire(+) TECs, loss of K5K8DP TECs thought to represent or contain an immature TEC progenitor, decreased TEC proliferation and the development of cystic structures, similar to an aged thymus. Removal of DKK1 from DKK1-involuted mice results in full recovery, suggesting that canonical Wnt signaling is required for the differentiation or proliferation of TEC populations needed for maintenance of properly organized adult thymic epithelial microenvironments. CONCLUSIONS/SIGNIFICANCE: Taken together, the results of this study demonstrate that canonical Wnt signaling within TECs is required for the maintenance of epithelial microenvironments in the postnatal thymus, possibly through effects on TEC progenitor/stem cell populations. Downstream targets of Wnt signaling, which are responsible for maintenance of these TEC progenitors may provide useful targets for therapies aimed at counteracting age associated thymic involution or the premature thymic degeneration associated with cancer therapy and bone marrow transplants.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Timo/metabolismo , Proteínas Wnt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Doxiciclina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Queratinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tetraciclina/farmacologia , Timo/citologia , Transativadores/genética , Proteínas Wnt/genética
8.
Clin Dev Immunol ; 13(2-4): 299-319, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17162372

RESUMO

Wnt signaling has been reported to regulate thymocyte proliferation and selection at several stages during T cell ontogeny, as well as the expression of FoxN1 in thymic epithelial cells (TECs). Kremen1 (Krm1) is a negative regulator of the canonical Wnt signaling pathway, and functions together with the secreted Wnt inhibitor Dickkopf (Dkk) by competing for the lipoprotein receptor-related protein (LRP)-6 co-receptor for Wnts. Here krm1 knockout mice were used to examine krm1 expression in the thymus and its function in thymocyte and TEC development. Krm1 expression was detected in both cortical and medullary TEC subsets, as well as in immature thymocyte subsets, beginning at the CD25+CD44+ (DN2) stage and continuing until the CD4+CD8+(DP) stage. Neonatal mice show elevated expression of krm1 in all TEC subsets. krm1(-/-) mice exhibit a severe defect in thymic cortical architecture, including large epithelial free regions. Much of the epithelial component remains at an immature Keratin 5+ (K5) Keratin 8(+)(K8) stage, with a loss of defined cortical and medullary regions. A TOPFlash assay revealed a 2-fold increase in canonical Wnt signaling in TEC lines derived from krm1(-/-) mice, when compared with krm1(+/+) derived TEC lines. Fluorescence activated cell sorting (FACS) analysis of dissociated thymus revealed a reduced frequency of both cortical (BP1(+)EpCAM(+)) and medullary (UEA-1(+) EpCAM(hi)) epithelial subsets, within the krm1(-/-) thymus. Surprisingly, no change in thymus size, total thymocyte number or the frequency of thymocyte subsets was detected in krm1(-/-) mice. However, our data suggest that a loss of Krm1 leads to a severe defect in thymic architecture. Taken together, this study revealed a new role for Krm1 in proper development of thymic epithelium.


Assuntos
Proteínas de Membrana/farmacologia , Transdução de Sinais/efeitos dos fármacos , Timo/citologia , Proteínas Wnt/antagonistas & inibidores , Proteínas de Xenopus/farmacologia , Animais , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Timo/imunologia , Timo/metabolismo , Proteínas Wnt/fisiologia
9.
Cell Immunol ; 228(2): 119-29, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15219463

RESUMO

Much debate has been generated about the existence of thymic nurse cells within the thymus. Until now, the authenticity of an epithelial cell capable of internalizing developing thymocytes within the thymic cortex has been in question. Here, we use the thymic nurse cell-specific monoclonal antibody, ph91, to define the in vivo location of thymic nurse cells. For the first time, thymic nurse cells enclosing several thymocytes were detected in the subcapsular region of the thymic cortex in a "honeycomb-like" configuration. In vitro studies show the internalization process using digitalized time-lapse microscopy. Internalized thymocytes have also been reported to interact with macrophages within the TNC complex. The cytoplasmic interaction between thymocytes and macrophages was detected using time-lapse microscopy. Using fluorescence microscopy, we show polymerization of actin within macrophages at the contact point with thymocytes, which is indicative of an immunological synapse. Microfilaments and microtubules within TNCs were shown to be associated with thymocyte binding and internalization, but neither interacted with macrophages. Also, we provide data to show that thymocytes are actively involved in the internalization process. These experiments show for the first time the existence of thymic nurse cells within the thymic microenvironment. They provide a visual documentation of thymocyte uptake by thymic nurse cells, and define an interaction between thymocytes and macrophages within the TNC complex.


Assuntos
Proteínas do Citoesqueleto/imunologia , Macrófagos Peritoneais/imunologia , Linfócitos T/imunologia , Timo/imunologia , Actinas/imunologia , Animais , Diferenciação Celular/imunologia , Técnicas de Cocultura , Macrófagos Peritoneais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Microscopia de Vídeo , Linfócitos T/citologia , Timo/citologia , Tubulina (Proteína)/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA