Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(6): 1067-1078, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37985418

RESUMO

Hypodopaminergia in the ventral striatum is a putative neurobiological correlate of withdrawal in opioid-dependent individuals. This perspective stands in contrast to brain imaging studies with chronic opioid users showing that naloxone-enhanced dopamine (DA) release in the dorsal striatum is positively correlated with withdrawal aversion. Here, we examined regional differences in striatal DA function associated with opioid withdrawal in rats exposed to intermittent morphine injections for 31 days. Basal concentrations of DA were reduced (i.e., indicating a hypodopaminergic state) in the ventral striatum on Day 10 of morphine exposure, whereas a more prolonged period of morphine treatment was required to reveal hypodopaminergia in the dorsal striatum on Day 31. The ventral striatum consistently exhibited naloxone-induced transient reductions in DA below the hypodopaminergic basal levels, whereas morphine enhanced DA efflux. In the dorsal striatum, DA responsivity to naloxone shifted from a significant decrease on Day 10 to a notable increase above hypodopaminergic basal levels on Day 31, corroborating the findings in the human dorsal striatum. Unexpectedly, the magnitude of morphine-evoked increases in DA efflux on Day 31 was significantly blunted relative to values on Day 10. These findings indicate that prolonged-intermittent access to morphine results in a sustained hypodopaminergic state as reflected in basal levels in the striatum, which is accompanied by regional differences in DA responsivity to naloxone and morphine. Overall, our findings suggest that prolonging the duration of morphine exposure to 31 days is sufficient to reveal neuroadaptations that may underlie the transition from initial drug exposure to opioid dependence.


Assuntos
Naloxona , Estriado Ventral , Humanos , Ratos , Animais , Naloxona/farmacologia , Morfina/farmacologia , Dopamina , Analgésicos Opioides/farmacologia , Corpo Estriado
2.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240217

RESUMO

Effective pain control is an underappreciated aspect of managing opioid withdrawal, and its absence presents a significant barrier to successful opioid detoxification. Accordingly, there is an urgent need for effective non-opioid treatments to facilitate opioid detoxification. l-Tetrahydropalmatine (l-THP) possesses powerful analgesic properties and is an active ingredient in botanical formulations used in Vietnam for the treatment of opioid withdrawal syndrome. In this study, rats receiving morphine (15 mg/kg, i.p.) for 5 days per week displayed a progressive increase in pain thresholds during acute 23 h withdrawal as assessed by an automated Von Frey test. A single dose of l-THP (5 or 7.5 mg/kg, p.o.) administered during the 4th and 5th weeks of morphine treatment significantly improves pain tolerance scores. A 7-day course of l-THP treatment in animals experiencing extended withdrawal significantly attenuates hyperalgesia and reduces the number of days to recovery to baseline pain thresholds by 61% when compared to vehicle-treated controls. This indicates that the efficacy of l-THP on pain perception extends beyond its half-life. As a non-opioid treatment for reversing a significant hyperalgesic state during withdrawal, l-THP may be a valuable addition to the currently limited arsenal of opioid detoxification treatments.


Assuntos
Hiperalgesia , Morfina , Ratos , Animais , Morfina/efeitos adversos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Analgésicos Opioides/efeitos adversos , Limiar da Dor
3.
Int J Neuropsychopharmacol ; 24(7): 580-591, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33693669

RESUMO

BACKGROUND: Latent inhibition (LI) reflects an adaptive form of learning impaired in certain forms of mental illness. Glutamate receptor activity is linked to LI, but the potential role of synaptic plasticity remains unspecified. METHODS: Accordingly, the present study examined the possible role of long-term depression (LTD) in LI induced by prior exposure of rats to an auditory stimulus used subsequently as a conditional stimulus to signal a pending footshock. We employed 2 mechanistically distinct LTD inhibitors, the Tat-GluA23Y peptide that blocks endocytosis of the GluA2-containing glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, or the selective glutamate n-methyl-d-aspartate receptor 2B antagonist, Ro25-6981, administered prior to the acquisition of 2-way conditioned avoidance with or without tone pre-exposure. RESULTS: Systemic LTD blockade with the Tat-GluA23Y peptide strengthened the LI effect by further impairing acquisition of conditioned avoidance in conditional stimulus-preexposed rats compared with normal conditioning in non-preexposed controls. Systemic Ro25-6981 had no significant effects. Brain region-specific microinjections of the Tat-GluA23Y peptide into the nucleus accumbens, medial prefrontal cortex, or central or basolateral amygdala demonstrated that disruption of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor endocytosis in the central amygdala also potentiated the LI effect. CONCLUSIONS: These data revealed a previously unknown role for central amygdala LTD in LI as a key mediator of cognitive flexibility required to respond to previously irrelevant stimuli that acquire significance through reinforcement. The findings may have relevance both for our mechanistic understanding of LI and its alteration in disease states such as schizophrenia, while further elucidating the role of LTD in learning and memory.


Assuntos
Comportamento Animal/fisiologia , Peptídeos Penetradores de Células/farmacologia , Núcleo Central da Amígdala/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Depressão Sináptica de Longo Prazo/fisiologia , Inibição Neural/fisiologia , Animais , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Comportamento Animal/efeitos dos fármacos , Núcleo Central da Amígdala/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Inibição Neural/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
4.
J Neurosci ; 39(10): 1842-1854, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30626700

RESUMO

Rats trained to perform a version of the rat gambling task (rGT) in which salient audiovisual cues accompany reward delivery, similar to commercial gambling products, show greater preference for risky options. Given previous demonstrations that probabilistic reinforcement schedules can enhance psychostimulant-induced increases in accumbal DA and locomotor activity, we theorized that performing this cued task could perpetuate a proaddiction phenotype. Significantly more rats developed a preference for the risky options in the cued versus uncued rGT at baseline, and this bias was further exacerbated by cocaine self-administration, whereas the choice pattern of optimal decision-makers was unaffected. The addition of reward-paired cues therefore increased the proportion of rats exhibiting a maladaptive cognitive response to cocaine self-administration. Risky choice was not associated with responding for conditioned reinforcement or a marker of goal/sign-tracking, suggesting that reward-concurrent cues precipitate maladaptive choice via a unique mechanism unrelated to simple approach toward, or responding for, conditioned stimuli. Although "protected" from any resulting decision-making impairment, optimal decision-makers trained on the cued rGT nevertheless self-administered more cocaine than those trained on the uncued task. Collectively, these data suggest that repeated engagement with heavily cued probabilistic reward schedules can drive addiction vulnerability through multiple behavioral mechanisms. Rats trained on the cued rGT also exhibited blunted locomotor sensitization and lower basal accumbal DA levels, yet greater cocaine-induced increases in accumbal DA efflux. Gambling in the presence of salient cues may therefore result in an adaptive downregulation of the mesolimbic DA system, rendering individuals more sensitive to the deleterious effects of taking cocaine.SIGNIFICANCE STATEMENT Impaired cost/benefit decision making, exemplified by preference for the risky, disadvantageous options on the Iowa Gambling Task, is associated with greater risk of relapse and treatment failure in substance use disorder. Understanding factors that enhance preference for risk may help elucidate the neurobiological mechanisms underlying maladaptive decision making in addiction, thereby improving treatment outcomes. Problem gambling is also highly comorbid with substance use disorder, and many commercial gambling products incorporate salient win-paired cues. Here we show that adding reward-concurrent cues to a rat analog of the IGT precipitates a hypodopaminergic state, characterized by blunted accumbal DA efflux and attenuated locomotor sensitization, which may contribute to the enhanced responsivity to uncertain rewards or the reinforcing effects of cocaine we observed.


Assuntos
Comportamento Aditivo/fisiopatologia , Cocaína/administração & dosagem , Sinais (Psicologia) , Dopamina/metabolismo , Comportamento de Procura de Droga/fisiologia , Jogo de Azar/fisiopatologia , Núcleo Accumbens/fisiopatologia , Recompensa , Estimulação Acústica , Animais , Comportamento de Procura de Droga/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Estimulação Luminosa , Ratos Long-Evans
5.
Cereb Cortex ; 27(11): 5331-5342, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28927240

RESUMO

Connections between the hippocampus (HC) and medial prefrontal cortex (mPFC) are critical for working memory; however, the precise contribution of this pathway is a matter of debate. One suggestion is that it may stabilize retrospective memories of recently encountered task-relevant information. Alternatively, it may be involved in encoding prospective memories, or the internal representation of future goals. To explore these possibilities, simultaneous extracellular recordings were made from mPFC and HC of rats performing the delayed spatial win-shift on a radial maze. Each trial consisted of a training-phase (when 4 randomly chosen arms were open) and test phase (all 8 arms were open but only previously blocked arms contained food) separated by a 60-s delay. Theta power was highest during the delay, and mPFC units were more likely to become entrained to hippocampal theta as the delay progressed. Training and test phase performance were accurately predicted by a linear classifier, and there was a transition in classification for training-phase to test-phase activity patterns throughout the delay on trials where the rats performed well. These data suggest that the HC and mPFC become more strongly synchronized as mPFC circuits preferentially shift from encoding retrospective to prospective information.


Assuntos
Comportamento Apetitivo/fisiologia , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Memória Espacial/fisiologia , Potenciais de Ação , Animais , Tomada de Decisões/fisiologia , Eletrocorticografia , Eletrodos Implantados , Masculino , Memória Episódica , Neurônios/fisiologia , Testes Neuropsicológicos , Ratos Long-Evans , Processamento de Sinais Assistido por Computador , Ritmo Teta , Fatores de Tempo
6.
J Neurosci ; 36(6): 1996-2006, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865622

RESUMO

Different subregions of the prefrontal cortex (PFC) contribute to the ability to respond flexibly to changes in reward contingencies, with the medial versus orbitofrontal cortex (OFC) subregions contributing differentially to processes such as set-shifting and reversal learning. To date, the manner in which these regions may facilitate reversal learning in situations involving reward uncertainty remains relatively unexplored. We investigated the involvement of five distinct regions of the rat OFC (lateral and medial) and medial PFC (prelimbic, infralimbic, and anterior cingulate) on probabilistic reversal learning wherein "correct" versus "incorrect" responses were rewarded on 80% and 20% of trials, respectively. Contingencies were reversed repeatedly within a session. In well trained rats, inactivation of the medial or lateral OFC induced dissociable impairments in performance (indexed by fewer reversals completed) when outcomes were probabilistic, but not when they were assured. Medial OFC inactivation impaired probabilistic learning during the first discrimination, increased perseverative responding and reduced sensitivity to positive and negative feedback, suggestive of a deficit in incorporating information about previous action outcomes to guide subsequent behavior. Lateral OFC inactivation preferentially impaired performance during reversal phases. In contrast, prelimbic inactivation caused an apparent improvement in performance by increasing the number of reversals completed. This was associated with enhanced sensitivity to recently rewarded actions and reduced sensitivity to negative feedback. Infralimbic inactivation had no effect, whereas the anterior cingulate appeared to play a permissive role in this form of reversal learning. These results clarify the dissociable contributions of different regions of the frontal lobes to probabilistic learning. SIGNIFICANCE STATEMENT: The ability to adjust behavior in response to changes involving uncertain or probabilistic reward contingencies is an essential survival skill that is impaired in a variety of psychiatric disorders. It is well established that different forms of cognitive flexibility are mediated by anatomically distinct regions of the frontal lobes when reinforcement contingencies are assured, however, less is known about the contribution of these regions to probabilistic reinforcement learning. Here we show that different regions of the orbitofrontal and medial prefrontal cortex make distinct contributions to probabilistic reversal learning. These findings provide novel information about the complex interplay between frontal lobe regions in mediating these processes and accordingly provide insight into possible pathophysiology that underlies impairments in cognitive flexibility observed in mental illnesses.


Assuntos
Lobo Frontal/fisiologia , Córtex Pré-Frontal/fisiologia , Reversão de Aprendizagem/fisiologia , Animais , Baclofeno/farmacologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Retroalimentação Psicológica , Lobo Frontal/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiologia , Masculino , Muscimol/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans , Reversão de Aprendizagem/efeitos dos fármacos , Recompensa , Incerteza
7.
J Neurosci ; 36(31): 8258-72, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27488644

RESUMO

UNLABELLED: The frontal cortex has been implicated in a number of cognitive and motivational processes, but understanding how individual neurons contribute to these processes is particularly challenging as they respond to a broad array of events (multiplexing) in a manner that can be dynamically modulated by the task context, i.e., adaptive coding (Duncan, 2001). Fundamental questions remain, such as how the flexibility gained through these mechanisms is balanced by the need for consistency and how the ensembles of neurons are coherently shaped by task demands. In the present study, ensembles of medial frontal cortex neurons were recorded from rats trained to perform three different operant actions either in two different sequences or two different physical environments. Single neurons exhibited diverse mixtures of responsivity to each of the three actions and these mixtures were abruptly altered by context/sequence switches. Remarkably, the overall responsivity of the population remained highly consistent both within and between context/sequences because the gains versus losses were tightly balanced across neurons and across the three actions. These data are consistent with a reallocation mixture model in which individual neurons express unique mixtures of selectivity for different actions that become reallocated as task conditions change. However, because the allocations and reallocations are so well balanced across neurons, the population maintains a low but highly consistent response to all actions. The frontal cortex may therefore balance consistency with flexibility by having ensembles respond in a fixed way to task-relevant actions while abruptly reconfiguring single neurons to encode "actions in context." SIGNIFICANCE STATEMENT: Flexible modes of behavior involve performance of similar actions in contextually relevant ways. The present study quantified the changes in how rat medial frontal cortex neurons respond to the same actions when performed in different task contexts (sequences or environments). Most neurons altered the mixture of actions they were responsive to in different contexts or sequences. Nevertheless, the responsivity profile of the ensemble remained fixed as did the ability of the ensemble to differentiate between the three actions. These mechanisms may help to contextualize the manner in which common events are represented across different situations.


Assuntos
Cognição/fisiologia , Lobo Frontal/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Simulação por Computador , Tomada de Decisões/fisiologia , Masculino , Ratos , Ratos Long-Evans , Análise e Desempenho de Tarefas
8.
J Psychiatry Neurosci ; 42(4): 222-229, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28234212

RESUMO

The molecular mechanisms underlying major depressive disorder remain poorly understood, and current antidepressant treatments have many shortcomings. The recent discovery that a single intravenous infusion of ketamine at a subanesthetic dose had robust, rapid and sustained antidepressant effects in individuals with treatment-resistant depression inspired tremendous interest in investigating the molecular mechanisms mediating ketamine's clinical efficacy as well as increased efforts to identify new targets for antidepressant action. We review the clinical utility of ketamine and recent insights into its mechanism of action as an antidepressant, including the roles of N-methyl-D-aspartate receptor inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor upregulation, activation of downstream synaptogenic signalling pathways and the production of an active ketamine metabolite, hydroxynorketamine. Emerging knowledge of the molecular mechanisms underlying both ketamine's positive therapeutic and detrimental side effects will aid the development of a new generation of much-needed superior antidepressant agents.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Ketamina/farmacologia , Ketamina/uso terapêutico , Receptores de AMPA/metabolismo , Animais , Antidepressivos/farmacocinética , Antidepressivos/uso terapêutico , Humanos , Ketamina/farmacocinética , Modelos Neurológicos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
9.
J Neurosci ; 35(28): 10172-87, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26180194

RESUMO

Modulation of neural activity by monoamine neurotransmitters is thought to play an essential role in shaping computational neurodynamics in the neocortex, especially in prefrontal regions. Computational theories propose that monoamines may exert bidirectional (concentration-dependent) effects on cognition by altering prefrontal cortical attractor dynamics according to an inverted U-shaped function. To date, this hypothesis has not been addressed directly, in part because of the absence of appropriate statistical methods required to assess attractor-like behavior in vivo. The present study used a combination of advanced multivariate statistical, time series analysis, and machine learning methods to assess dynamic changes in network activity from multiple single-unit recordings from the medial prefrontal cortex (mPFC) of rats while the animals performed a foraging task guided by working memory after pretreatment with different doses of d-amphetamine (AMPH), which increases monoamine efflux in the mPFC. A dose-dependent, bidirectional effect of AMPH on neural dynamics in the mPFC was observed. Specifically, a 1.0 mg/kg dose of AMPH accentuated separation between task-epoch-specific population states and convergence toward these states. In contrast, a 3.3 mg/kg dose diminished separation and convergence toward task-epoch-specific population states, which was paralleled by deficits in cognitive performance. These results support the computationally derived hypothesis that moderate increases in monoamine efflux would enhance attractor stability, whereas high frontal monoamine levels would severely diminish it. Furthermore, they are consistent with the proposed inverted U-shaped and concentration-dependent modulation of cortical efficiency by monoamines.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Dinâmica não Linear , Córtex Pré-Frontal/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Inteligência Artificial , Simulação por Computador , Relação Dose-Resposta a Droga , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Análise Multivariada , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Ratos , Ratos Long-Evans , Fatores de Tempo
10.
J Neurosci ; 34(13): 4618-26, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24672007

RESUMO

Different subregions of nucleus accumbens (NAc) have been implicated in reward seeking, promoting flexible approach responses, suppressing nonrewarded actions, and facilitating shifts between different discrimination strategies. Interestingly, the NAc does not appear to mediate shifting between stimulus-reward associations (i.e., reversal learning) when reinforcement is predictable. How these nuclei may facilitate flexible response strategies when reward delivery is uncertain remains unclear. We investigated the effects of inactivation of the NAc shell and core on probabilistic reversal learning using an operant task wherein a "correct" response delivered reward on 80% of trials, and an "incorrect" response was reinforced on 20% of trials. Reinforcement contingencies were reversed repeatedly within a session. In well-trained rats, shell inactivation reduced the number of reversals completed and selectively reduced win-stay behavior. This impairment was apparent during the first discrimination, indicating a more general deficit in the use of probabilistic reward feedback to guide action selection. Shell inactivation also impaired reversal performance on a similar task where correct/incorrect choices always/never delivered reward. However, this impairment only emerged after both levers had been associated with reward. Inactivation of NAc core did not impair reversal performance but increased latencies to approach the response levers. These results suggest the NAc shell and core facilitate reward seeking in a distinct yet complementary manner when the relationship between specific actions and reward is uncertain or ambiguous and cognitive flexibility is required. The core promotes approach toward reward-associated stimuli, whereas the shell refines response selection to those specific actions more likely to yield reward.


Assuntos
Condicionamento Operante/fisiologia , Núcleo Accumbens/fisiologia , Aprendizagem por Probabilidade , Reforço Psicológico , Reversão de Aprendizagem/fisiologia , Animais , Baclofeno/farmacologia , Condicionamento Operante/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Masculino , Microinjeções , Muscimol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Long-Evans , Reversão de Aprendizagem/efeitos dos fármacos
11.
J Neurosci ; 34(6): 2244-53, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24501363

RESUMO

When performing sequences of actions, we constantly keep track of our current position in the sequence relative to the overall goal. The present study searched for neural representations of sequence progression in corticostriatal circuits. Neurons within the anterior cingulate cortex (ACC) and its target region in the dorsal striatum (DS) were recorded from simultaneously as rats performed different sequences of lever presses. We analyzed the responses of the neurons to presses occurring in the "first," "second," or "third" serial position regardless of the particular sequence or physical levers. Principal component analysis revealed that the main source of firing rate variance in the ACC was a smooth ramp-like change as the animal progressed through the sequence toward the reward. No such smooth-ramping activity was observed in DS ensembles as firing tended to be tightly linked to each action. In the ACC, the progression in firing was observed only for correct choices and not errors, whereas in the DS, firing associated with each action in a sequence was similar regardless of whether the action was correct or not. Therefore, different forms of a signal exist within corticostriatal circuits that evolve across a sequence of actions, with DS ensembles tracking every action and ACC ensembles tracking actual progress toward the goal.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Objetivos , Recompensa , Animais , Condicionamento Operante/fisiologia , Masculino , Vias Neurais/fisiologia , Desempenho Psicomotor/fisiologia , Distribuição Aleatória , Ratos , Ratos Long-Evans
12.
Behav Pharmacol ; 26(1-2): 133-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25325293

RESUMO

Most antipsychotic drugs act as dopamine D2 receptor antagonists within the basal ganglia. These compounds have efficacy in the treatment of positive symptoms of schizophrenia but do not address the cognitive deficits that define this disorder. D,L-Govadine, a recently synthesized tetrahydroprotoberberine, shows efficacy on preclinical tests of antipsychotic action, as well as procognitive properties. We sought to compare D,L-govadine with two atypical antipsychotics, clozapine and olanzapine, on repeated conditioned avoidance responding (CAR), a task that has recently been utilized to model the effects of repeated antipsychotic treatment. After acquisition of two-way avoidance, rats were given D,L-govadine, clozapine, olanzapine or a vehicle control before repeated testing on CAR. Daily sessions were conducted, with 'drug-on' days spaced by a 'drug-off' test day and a rest day, for a total of five drug administrations. Consistent with previous research, the lower dose of olanzapine showed a modest but progressive increase in disruption of avoidance behaviour as observed with many antipsychotics. In contrast, repeated administration of clozapine led to tolerance, and the novel compound D,L-govadine produced a consistent effect across administrations. This stable effect of D,L-govadine on CAR may indicate a desirable preclinical profile for a candidate antipsychotic compound.


Assuntos
Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Alcaloides de Berberina/farmacologia , Clozapina/farmacologia , Animais , Antipsicóticos/administração & dosagem , Aprendizagem da Esquiva/efeitos dos fármacos , Benzodiazepinas/administração & dosagem , Alcaloides de Berberina/administração & dosagem , Clozapina/administração & dosagem , Condicionamento Psicológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Tolerância a Medicamentos , Masculino , Olanzapina , Ratos , Ratos Sprague-Dawley
13.
Int J Neuropsychopharmacol ; 18(1)2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25539503

RESUMO

BACKGROUND: Drug addiction is a chronic brain disease characterized by recurrent episodes of relapse to drug-seeking/-taking behaviors. The ventral subiculum, the primary output of the hippocampus, plays a critical role in mediating drug-seeking behavior. METHODS: A d-amphetamine intravenous self-administration rat model was employed along with focal electrical stimulation of the ventral subiculum (20 Hz/200 pulses) to examine its role in reinstatement of drug-seeking behavior. Dopamine efflux in the nucleus accumbens was measured by in vivo microdialysis and subsequent HPLC-ED analyses. Pharmacological antagonism of dopamine and ionotropic glutamate receptors locally within the nucleus accumbens was employed to assess the role of glutamate and dopamine in reinstatement of drug-seeking behavior induced by stimulation of the ventral subiculum. RESULTS: Here, we demonstrate that reinstatement of drug-seeking behavior following extinction of d-amphetamine self-administration by rats was induced by electrical stimulation in the ventral subiculum but not the cortex. This reinstatement was accompanied by a significant increase in dopamine efflux in the nucleus accumbens and was disrupted by microinfusion of a dopamine D1 or D2 antagonist into the nucleus accumbens. Inhibition of N-methyl-D-aspartate or non- N-methyl-D-aspartate receptors had no effect on the reinstatement induced by ventral subiculum stimulation, whereas co-infusion of D1 and N-methyl-D-aspartate antagonists at formerly ineffective doses prevented drug-seeking behavior. CONCLUSIONS: These data support the hypothesis that dopamine/glutamate interactions within the ventral striatum related to memory processes are involved in relapse to addictive behavior.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Dopamina/metabolismo , Comportamento de Procura de Droga/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/fisiopatologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Dextroanfetamina/administração & dosagem , Antagonistas de Dopamina/farmacologia , Estimulação Elétrica , Extinção Psicológica/fisiologia , Hipocampo/efeitos dos fármacos , Ácido Homovanílico/metabolismo , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiopatologia , Ratos Long-Evans , Receptores Dopaminérgicos/metabolismo , Receptores Ionotrópicos de Glutamato/antagonistas & inibidores , Receptores Ionotrópicos de Glutamato/metabolismo , Autoadministração , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiopatologia
14.
J Psychiatry Neurosci ; 39(3): 189-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24290077

RESUMO

BACKGROUND: Behavioural sensitization has been linked to drug craving in both clinical and preclinical studies of addiction. Increased motor activity is accompanied by enhanced dopamine (DA) release, particularly in the nucleus accumbens (NAcc). The neural bases of sensitization are linked to alterations in synaptic connections that also underlie learning and memory. The present study uses an "interference" peptide, Tat-GluA2(3Y), that blocks long-term depression (LTD) at glutamatergic synapses by disrupting the endocytosis of α- amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs), to explore the role of this form of synaptic plasticity in the induction and maintenance of sensitization. METHODS: Rats were given 5 injections of d-amphetamine (d-AMPH, 1.0 mg/kg, intraperitoneal) every second day. Tat-GluA2(3Y), was administered by 2 different routes (intravenously and intracerebrally to the ventral tegmental area [VTA] or to the NAcc) before each injection of d-AMPH. After a 14-day drug-free period, expression of behavioural sensitization was evoked by a challenge injection of d-AMPH (0.5 mg/kg, intraperitoneal). Dopamine efflux in the NAcc was measured by high-pressure liquid chromatography with electrochemical detection analyses of brain dialysates on days 1, 9 and 24 of the intravenous peptide experiment. RESULTS: Systemic administration of Tat-GluA2(3Y) during the induction phase blocked maintenance of behavioural sensitization and attenuated the maintenance of neurochemical sensitization. Intra-VTA infusion of Tat-GluA2(3Y) before each administration of d-AMPH did not affect induction, but inhibited maintenance and subsequent expression of sensitization, whereas intra-NAcc infusion of the peptide did not affect induction or maintenance of sensitization. LIMITATIONS: The relevance of behavioural sensitization in rodents is related to the development of craving and does not provide direct measures of drug reinforcement. CONCLUSION: These findings confirm that drug-induced neuroplasticity is labile and may be subject to disruption at a time when long-lasting associations between drug reward and contextual stimuli are formed. Furthermore, the unique ability of Tat-GluA2(3Y) to block maintenance of behavioural sensitization implicates LTD in the consolidation of essential associative memories. Tat-GluA2(3Y) has the unique ability to disrupt functional neuroadaptations triggered by repeated psychostimulant exposure and therefore may protect against the development of craving and drug seeking behaviours.


Assuntos
Anfetamina/farmacologia , Peptídeos Penetradores de Células/farmacologia , Dopaminérgicos/farmacologia , Endocitose/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Receptores de AMPA/metabolismo , Animais , Cateteres de Demora , Fármacos do Sistema Nervoso Central/administração & dosagem , Cromatografia Líquida de Alta Pressão , Endocitose/efeitos dos fármacos , Masculino , Microdiálise , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiopatologia , Ratos Sprague-Dawley , Fatores de Tempo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiopatologia
15.
Proc Natl Acad Sci U S A ; 108(45): 18459-64, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22032926

RESUMO

Enhanced dopamine efflux in the prefrontal cortex is a well-documented response to acute stress. However, the underlying mechanism(s) for this response is unknown. Using in vivo microdialysis, we demonstrate that blocking glucocorticoid receptors locally within the rat prefrontal cortex results in a reduction in stress-evoked dopamine efflux. In contrast, blocking glucocorticoid receptors in the ventral tegmental area did not affect stress-evoked dopamine efflux in the prefrontal cortex. Additionally, local administration of corticosterone into the prefrontal cortex increased prefrontal dopamine efflux. The functional impact of enhanced dopamine efflux evoked by acute stress was demonstrated using a cognitive task dependent on the prefrontal cortex and sensitive to impairment in working memory. Notably, stress-induced impairments in cognition were attenuated by blockade of glucocorticoid receptors in the prefrontal cortex. Taken together, these data demonstrate that glucocorticoids act locally within the prefrontal cortex to modulate mesocortical dopamine efflux leading to the cognitive impairments observed during acute stress.


Assuntos
Dopamina/metabolismo , Função Executiva , Córtex Pré-Frontal/fisiologia , Receptores de Glucocorticoides/fisiologia , Estresse Fisiológico , Animais , Cromatografia Líquida de Alta Pressão , Corticosterona/administração & dosagem , Masculino , Microdiálise , Córtex Pré-Frontal/metabolismo , Radioimunoensaio , Ratos , Ratos Sprague-Dawley
16.
Neuropharmacology ; 246: 109849, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244888

RESUMO

Cognitive impairment is a debilitating feature of psychiatric disorders including schizophrenia, mood disorders and substance use disorders for which there is a substantial lack of effective therapies. d-Govadine (d-GOV) is a tetrahydroprotoberberine recently shown to significantly enhance working memory and behavioural flexibility in several prefrontal cortex (PFC)-dependent rodent tasks. d-GOV potentiates dopamine (DA) efflux in the mPFC and not the nucleus accumbens, a unique pharmacology that sets it apart from many dopaminergic drugs and likely contributes to its effects on cognitive function. However, specific mechanisms involved in the preferential effects of d-GOV on mPFC DA function remain to be determined. The present study employs brain dialysis in male rats to deliver d-GOV into the mPFC or ventral tegmental area (VTA), while simultaneously sampling DA and norepinephrine (NE) efflux in the mPFC. Intra-PFC delivery or systemic administration of d-GOV preferentially potentiated medial prefrontal DA vs NE efflux. This differential effect of d-GOV on the primary catecholamines known to affect mPFC function further underscores its specificity for the mPFC DA system. Importantly, the potentiating effect of d-GOV on mPFC DA was disrupted when glutamatergic transmission was blocked in either the mPFC or the VTA. We hypothesize that d-GOV acts in the mPFC to engage the mesocortical feedback loop through which prefrontal glutamatergic projections activate a population of VTA DA neurons that specifically project back to the PFC. The activation of a PFC-VTA feedback loop to elevate PFC DA efflux without affecting mesolimbic DA release represents a novel approach to developing pro-cognitive drugs.


Assuntos
Alcaloides de Berberina , Dopamina , Nootrópicos , Humanos , Ratos , Masculino , Animais , Dopamina/farmacologia , Nootrópicos/farmacologia , Ratos Sprague-Dawley , Norepinefrina/farmacologia , Área Tegmentar Ventral , Córtex Pré-Frontal
17.
J Neurosci ; 32(47): 16880-91, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23175840

RESUMO

Mesocorticolimbic dopamine (DA) has been implicated in cost/benefit decision making about risks and rewards. The prefrontal cortex (PFC) and nucleus accumbens (NAc) are two DA terminal regions that contribute to decision making in distinct manners. However, how fluctuations of tonic DA levels may relate to different aspects of decision making remains to be determined. The present study measured DA efflux in the PFC and NAc with microdialysis in well trained rats performing a probabilistic discounting task. Selection of a small/certain option always delivered one pellet, whereas another, large/risky option yielded four pellets, with probabilities that decreased (100-12.5%) or increased (12.5-100%) across four blocks of trials. Yoked-reward groups were also included to control for reward delivery. PFC DA efflux during decision making decreased or increased over a session, corresponding to changes in large/risky reward probabilities. Similar profiles were observed from yoked-rewarded rats, suggesting that fluctuations in PFC DA reflect changes in the relative rate of reward received. NAc DA efflux also showed decreasing/increasing trends over the session during both tasks. However, DA efflux was higher during decision making on free- versus forced-choice trials and during periods of greater reward uncertainty. Moreover, changes in NAc DA closely tracked shifts in choice biases. These data reveal dynamic and dissociable fluctuations in PFC and NAc DA transmission associated with different aspects of risk-based decision making. PFC DA may signal changes in reward availability that facilitates modification of choice biases, whereas NAc DA encodes integrated signals about reward rates, uncertainty, and choice, reflecting implementation of decision policies.


Assuntos
Tomada de Decisões/fisiologia , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Assunção de Riscos , Animais , Comportamento de Escolha/fisiologia , Cromatografia Líquida de Alta Pressão , Condicionamento Operante/fisiologia , Interpretação Estatística de Dados , Masculino , Microdiálise , Núcleo Accumbens/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Ratos , Ratos Long-Evans , Recompensa , Incerteza
18.
Int J Neuropsychopharmacol ; 16(8): 1799-807, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23590841

RESUMO

Enhanced dopamine (DA) efflux in the medial prefrontal cortex (mPFC) is a well-documented response to acute stress. We have previously shown that glucocorticoid receptors in the mPFC regulate stress-evoked DA efflux but the underlying mechanism is unknown. DA neurons in the ventral tegmental area (VTA) receive excitatory input from and send reciprocal projections to the mPFC. We hypothesize that blockade of prefrontal glucocorticoid receptors can reduce activity of descending glutamatergic input to the VTA, thereby attenuating stress-evoked DA efflux in the mPFC. Using in vivo microdialysis, we demonstrate that acute tail-pinch stress leads to a significant increase in glutamate efflux in the VTA. Blockade of prefrontal glucocorticoid receptors with the selective antagonist CORT 108297 attenuates stress-evoked glutamate efflux in the VTA together with DA efflux in the mPFC. Furthermore, blockade of ionotrophic glutamate receptors in the VTA attenuates stress-evoked DA efflux in the mPFC. We also examine the possible role of glucocorticoid-induced synthesis and release of endocannabinoids acting presynaptically via cannabinoid CB1 receptors to inhibit GABA release onto prefrontal pyramidal cells, thus enhancing descending glutamatergic input to the VTA leading to an increase in mPFC DA efflux during stress. However, administration of the cannabinoid CB1 receptor antagonist into the mPFC does not attenuate stress-evoked DA efflux in the mPFC. Taken together, our data indicate that glucocorticoids act locally within the mPFC to modulate mesocortical DA efflux by potentiation of glutamatergic drive onto DA neurons in the VTA.


Assuntos
Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Estresse Fisiológico/fisiologia , Área Tegmentar Ventral/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Área Sob a Curva , Compostos Aza/farmacologia , Cromatografia Líquida de Alta Pressão , Vias Eferentes/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Antagonistas de Hormônios/farmacologia , Masculino , Microdiálise , Mifepristona/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico/efeitos dos fármacos , Cauda/inervação , Valina/análogos & derivados , Valina/farmacologia
19.
Proc Natl Acad Sci U S A ; 107(38): 16697-702, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20823230

RESUMO

Although NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) and long-term depression (LTD) of glutamatergic transmission are candidate mechanisms for long-term spatial memory, the precise contributions of LTP and LTD remain poorly understood. Here, we report that LTP and LTD in the hippocampal CA1 region of freely moving adult rats were prevented by NMDAR 2A (GluN2A) and 2B subunit (GluN2B) preferential antagonists, respectively. These results strongly suggest that NMDAR subtype preferential antagonists are appropriate tools to probe the roles of LTP and LTD in spatial memory. Using a Morris water maze task, the LTP-blocking GluN2A antagonist had no significant effect on any aspect of performance, whereas the LTD-blocking GluN2B antagonist impaired spatial memory consolidation. Moreover, similar spatial memory deficits were induced by inhibiting the expression of LTD with intrahippocampal infusion of a short peptide that specifically interferes with AMPA receptor endocytosis. Taken together, our findings support a functional requirement of hippocampal CA1 LTD in the consolidation of long-term spatial memory.


Assuntos
Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Memória/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Fenóis/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Subunidades Proteicas , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/classificação , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia
20.
Int J Neuropsychopharmacol ; 15(10): 1441-55, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22071247

RESUMO

Tetrahydroprotoberberines (THPBs) are compounds derived from traditional Chinese medicine and increasing preclinical evidence suggests efficacy in treatment of a wide range of symptoms observed in schizophrenia. A receptor-binding profile of the THPB, d.l-govadine (d.l-Gov), reveals high affinity for dopamine and noradrenaline receptors, efficacy as a D2 receptor antagonist, brain penetrance in the 10-300 ng/g range, and thus motivated an assessment of the antipsychotic and pro-cognitive properties of this compound in the rat. Increased dopamine efflux in the prefrontal cortex and nucleus accumbens, measured by microdialysis, is observed following subcutaneous injection of the drug. d.l-Gov inhibits both conditioned avoidance responding (CAR) and amphetamine-induced locomotion (AIL) at lower doses than clozapine (CAR ED50: d.l-Gov 0.72 vs. clozapine 7.70 mg/kg; AIL ED50: d.l-Gov 1.70 vs. clozapine 4.27 mg/kg). Catalepsy is not detectable at low biologically relevant doses, but is observed at higher doses. Consistent with previous reports, acute d-amphetamine disrupts latent inhibition (LI) while a novel finding of enhanced LI is observed in sensitized animals. Treatment with d.l-Gov prior to conditioned stimulus (CS) pre-exposure restores LI to levels observed in controls in both sensitized animals and those treated acutely with d-amphetamine. Finally, possible pro-cognitive properties of d.l-Gov are assessed with the spatial delayed win-shift task. Subcutaneous injection of 1.0 mg/kg d.l-Gov failed to affect errors at a 30-min delay, but decreased errors observed at a 12-h delay. Collectively, these data provide the first evidence that d.l-Gov may have antipsychotic properties in conjunction with pro-cognitive effects, lending further support to the hypothesis that THPBs are a class of compounds which merit serious consideration as novel treatments for schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Alcaloides de Berberina/farmacologia , Cognição/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nootrópicos/farmacologia , Animais , Antipsicóticos/química , Aprendizagem da Esquiva/fisiologia , Alcaloides de Berberina/química , Cognição/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Atividade Motora/fisiologia , Nootrópicos/química , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA