Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Neuroimage ; 279: 120324, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574122

RESUMO

The term free-water volume fraction (FWVF) refers to the signal fraction that could be found as the cerebrospinal fluid of the brain, which has been demonstrated as a sensitive measure that correlates with cognitive performance and various neuropathological processes. It can be quantified by properly fitting the isotropic component of the magnetic resonance (MR) signal in diffusion-sensitized sequences. Using N=287 healthy subjects (178F/109M) aged 25-94, this study examines in detail the evolution of the FWVF obtained with the spherical means technique from multi-shell acquisitions in the human brain white matter across the adult lifespan, which has been previously reported to exhibit a positive trend when estimated from single-shell data using the bi-tensor signal representation. We found evidence of a noticeably non-linear gain after the sixth decade of life, with a region-specific variate and varying change rate of the spherical means-based multi-shell FWVF parameter with age, at the same time, a heteroskedastic pattern across the adult lifespan is suggested. On the other hand, the FW corrected diffusion tensor imaging (DTI) leads to a region-dependent flattened age-related evolution of the mean diffusivity (MD) and fractional anisotropy (FA), along with a considerable reduction in their variability, as compared to the studies conducted over the standard (single-component) DTI. This way, our study provides a new perspective on the trajectory-based assessment of the brain and explains the conceivable reason for the variations observed in FA and MD parameters across the lifespan with previous studies under the standard diffusion tensor imaging.


Assuntos
Substância Branca , Adulto , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Anisotropia , Água
2.
Neuroimage ; 277: 120231, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330025

RESUMO

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas
3.
Magn Reson Med ; 89(1): 440-453, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121312

RESUMO

PURPOSE: We seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP). THEORY AND METHODS: First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test-retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation. RESULTS: Findings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test-retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude. CONCLUSIONS: Despite being a direct development on the MAP-MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Humanos , Anisotropia , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem
4.
Neuroimage ; 240: 118367, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237442

RESUMO

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.


Assuntos
Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Animais , Encéfalo/fisiologia , Humanos , Camundongos
5.
Med Image Anal ; 84: 102728, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542908

RESUMO

Hybrid Diffusion Imaging (HYDI) was one of the first attempts to use multi-shell samplings of the q-space to infer diffusion properties beyond Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI). HYDI was intended as a flexible protocol embedding both DTI (for lower b-values) and HARDI (for higher b-values) processing, as well as Diffusion Spectrum Imaging (DSI) when the entire data set was exploited. In the latter case, the spherical sampling of the q-space is re-gridded by interpolation to a Cartesian lattice whose extent covers the range of acquired b-values, hence being acquisition-dependent. The Discrete Fourier Transform (DFT) is afterwards used to compute the corresponding Cartesian sampling of the Ensemble Average Propagator (EAP) in an entirely non-parametric way. From this lattice, diffusion markers such as the Return To Origin Probability (RTOP) or the Mean Squared Displacement (MSD) can be numerically estimated. We aim at re-formulating this scheme by means of a Fourier Transform encoding matrix that eliminates the need for q-space re-gridding at the same time it preserves the non-parametric nature of HYDI-DSI. The encoding matrix is adaptively designed at each voxel according to the underlying DTI approximation, so that an optimal sampling of the EAP can be pursued without being conditioned by the particular acquisition protocol. The estimation of the EAP is afterwards carried out as a regularized Quadratic Programming (QP) problem, which allows to impose positivity constraints that cannot be trivially embedded within the conventional HYDI-DSI. We demonstrate that the definition of the encoding matrix in the adaptive space allows to analytically (as opposed to numerically) compute several popular descriptors of diffusion with the unique source of error being the cropping of high frequency harmonics in the Fourier analysis of the attenuation signal. They include not only RTOP and MSD, but also Return to Axis/Plane Probabilities (RTAP/RTPP), which are defined in terms of specific spatial directions and are not available with the former HYDI-DSI. We report extensive experiments that suggest the benefits of our proposal in terms of accuracy, robustness and computational efficiency, especially when only standard, non-dedicated q-space samplings are available.


Assuntos
Encéfalo , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Multimodal , Processamento de Imagem Assistida por Computador/métodos
6.
Neuroimage Clin ; 39: 103483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37572514

RESUMO

The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients. The number of gradient directions had an impact on white matter analysis results, with statistically significant differences between groups being drastically reduced when using 21 gradient directions instead of the original 61. Fourteen teams from different institutions were tasked to use DL to enhance three diffusion metrics (FA, AD and MD) calculated from data acquired with 21 gradient directions and a b-value of 1000 s/mm2. The goal was to produce results that were comparable to those calculated from 61 gradient directions. The results were evaluated using both standard image quality metrics and Tract-Based Spatial Statistics (TBSS) to compare episodic and chronic migraine patients. The study results suggest that while most DL techniques improved the ability to detect statistical differences between groups, they also led to an increase in false positive. The results showed that there was a constant growth rate of false positives linearly proportional to the new true positives, which highlights the risk of generalization of AI-based tasks when assessing diverse clinical cohorts and training using data from a single group. The methods also showed divergent performance when replicating the original distribution of the data and some exhibited significant bias. In conclusion, extreme caution should be exercised when using AI methods for harmonization or synthesis in clinical studies when processing heterogeneous data in clinical studies, as important information may be altered, even when global metrics such as structural similarity or peak signal-to-noise ratio appear to suggest otherwise.


Assuntos
Aprendizado Profundo , Transtornos de Enxaqueca , Humanos , Imagem de Tensor de Difusão/métodos , Inteligência Artificial , Imagem de Difusão por Ressonância Magnética/métodos , Transtornos de Enxaqueca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
7.
Magn Reson Imaging ; 91: 52-61, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35561868

RESUMO

This work focuses on obtaining a magnetic resonance imaging (MRI) signal representation that accounts for a longitudinal T1 and transverse T2⋆ relaxations while at the same time integrating directional diffusion in the context of scattered multi-parametric acquisitions, where only a few diffusion gradient directions and b-values are available for each pair of echo and inversion times. The method is based on the three-dimensional simple harmonic oscillator-based reconstruction and estimation (SHORE) representation of the diffusion signal, which enables the estimation of the orientation distribution function and the retrieval of various quantitative indices such as the generalized fractional anisotropy or the return-to-the-origin probability while simultaneously resolving for T1 and T2⋆ relaxation times. Our technique, the Relax-SHORE, has been tested on both in silico and in vivo diffusion-relaxation scattered MR data. The results show that Relax-SHORE is accurate in the context of scattered acquisitions while guaranteeing flexibility in the diffusion signal representation from multi-parametric sequences.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Anisotropia , Encéfalo , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos
8.
Front Neuroimaging ; 1: 958680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555138

RESUMO

Diffusion MR is sensitive to the microstructural features of a sample. Fine-scale characteristics can be probed by employing strong diffusion gradients while the low b-value regime is determined by the cumulants of the distribution of particle displacements. A signal representation based on the cumulants, however, suffers from a finite convergence radius and cannot represent the 'localization regime' characterized by a stretched exponential decay that emerges at large gradient strengths. Here, we propose a new representation for the diffusion MR signal. Our method provides not only a robust estimate of the first three cumulants but also a meaningful extrapolation of the entire signal decay.

9.
Med Image Anal ; 77: 102356, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35074665

RESUMO

AMURA (Apparent Measures Using Reduced Acquisitions) was originally proposed as a method to infer micro-structural information from single-shell acquisitions in diffusion MRI. It reduces the number of samples needed and the computational complexity of the estimation of diffusion properties of tissues by assuming the diffusion anisotropy is roughly independent on the b-value. This simplification allows the computation of simplified expressions and makes it compatible with standard acquisition protocols commonly used even in clinical practice. The present work proposes an extension of AMURA that allows the calculation of general moments of the diffusion signals that can be applied to describe the diffusion process with higher accuracy. We provide simplified expressions to analytically compute a set of scalar indices as moments of arbitrary orders over either the whole 3-D space, particular directions, or particular planes. The existing metrics previously proposed for AMURA (RTOP, RTPP and RTAP) are now special cases of this generalization. An extensive set of experiments is performed on public data and a clinical clase acquired with a standard type acquisition. The new metrics provide additional information about the diffusion processes inside the brain.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos
10.
J Neurosci Methods ; 347: 108951, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017644

RESUMO

Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Anisotropia , Axônios , Encéfalo/diagnóstico por imagem , Difusão
11.
PLoS One ; 15(3): e0229526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32150547

RESUMO

In diffusion MRI, the Ensemble Average diffusion Propagator (EAP) provides relevant micro-structural information and meaningful descriptive maps of the white matter previously obscured by traditional techniques like Diffusion Tensor Imaging (DTI). The direct estimation of the EAP, however, requires a dense sampling of the Cartesian q-space involving a huge amount of samples (diffusion gradients) for proper reconstruction. A collection of more efficient techniques have been proposed in the last decade based on parametric representations of the EAP, but they still imply acquiring a large number of diffusion gradients with different b-values (shells). Paradoxically, this has come together with an effort to find scalar measures gathering all the q-space micro-structural information probed in one single index or set of indices. Among them, the return-to-origin (RTOP), return-to-plane (RTPP), and return-to-axis (RTAP) probabilities have rapidly gained popularity. In this work, we propose the so-called "Apparent Measures Using Reduced Acquisitions" (AMURA) aimed at computing scalar indices that can mimic the sensitivity of state of the art EAP-based measures to micro-structural changes. AMURA drastically reduces both the number of samples needed and the computational complexity of the estimation of diffusion properties by assuming the diffusion anisotropy is roughly independent from the radial direction. This simplification allows us to compute closed-form expressions from single-shell information, so that AMURA remains compatible with standard acquisition protocols commonly used even in clinical practice. Additionally, the analytical form of AMURA-based measures, as opposed to the iterative, non-linear reconstruction ubiquitous to full EAP techniques, turns the newly introduced apparent RTOP, RTPP, and RTAP both robust and efficient to compute.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Algoritmos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/estatística & dados numéricos , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem
12.
Magn Reson Imaging ; 53: 123-133, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30036654

RESUMO

PURPOSE: In this work, we have proposed a methodology for the estimation of the apparent diffusion coefficient in the body from multiple breath hold diffusion weighted images, which is robust to two preeminent confounding factors: noise and motion during acquisition. METHODS: We have extended a method for the joint groupwise multimodal registration and apparent diffusion coefficient estimation, previously proposed by the authors, in order to correct the bias that arises from the non-Gaussianity of the data and the registration procedure. RESULTS: Results show that the proposed methodology provides a statistically significant improvement both in robustness for displacement fields calculation and in terms of accuracy for the apparent diffusion coefficient estimation as compared with traditional sequential approaches. Reproducibility has also been measured on real data in terms of the distribution of apparent diffusion coefficient differences obtained from different b-values subsets. CONCLUSIONS: Our proposal has shown to be able to effectively correct the estimation bias by introducing additional computationally light procedures to the original method, thus providing robust apparent diffusion coefficient maps in the liver and allowing an accurate and reproducible analysis of the tissue.


Assuntos
Suspensão da Respiração , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Fígado , Movimento , Distribuição Normal , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Distribuição Tecidual
13.
Magn Reson Imaging ; 54: 194-213, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30196167

RESUMO

An imaging biomarker is a biologic feature in an image that is relevant to a patient's diagnosis or prognosis. In order to qualify as a biomarker, a measure must be robust and reproducible. However, the usual scalar measures derived from diffusion tensor imaging are known to be highly dependent on the variation of the acquisition parameters, which prevents their possible use as biomarkers. In this work, we propose a new set of quantitative measures based on diffusion magnetic resonance imaging from single-shell acquisitions that are designed to be robust to the variations of several acquisition parameters (number of gradient directions, b-value and SNR) while keeping a high discrimination power on differences in the diffusion characteristics of the tissue. These new scalar measures are analytically obtained from a generic diffusion function that does not require the calculation of a diffusion tensor. This way, on one hand, we avoid the use of a specific diffusion model and, on the other hand, we make easier the statistical characterization of the measures. Accordingly, the analysis of the measures bias is carried out and it is used to minimize their dependency with respect to the acquisition noise for different SNRs. The robustness and discrimination power of the measures are tested for different number of gradients, b-values and SNRs using a realistic phantom and three real datasets: (1) 13 control subjects and different acquisition parameters; (2) a public data set from a single subject acquired using multiple shells and (3) 32 schizophrenia patients and 32 age and sex-matched healthy controls with a varying number of gradient directions. The proposed quantitative measures exhibit low variability to the changes of the acquisition parameters, while at the same time they preserve a discrimination power that is able to detect significant changes in the anisotropy of the diffusion.


Assuntos
Biomarcadores , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Adulto , Anisotropia , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Bases de Dados Factuais , Feminino , Análise de Fourier , Humanos , Masculino , Imagens de Fantasmas , Reprodutibilidade dos Testes , Esquizofrenia/diagnóstico por imagem , Razão Sinal-Ruído
14.
IEEE Trans Pattern Anal Mach Intell ; 39(10): 2015-2029, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27845653

RESUMO

Parallel magnetic resonance imaging (pMRI) techniques have gained a great importance both in research and clinical communities recently since they considerably accelerate the image acquisition process. However, the image reconstruction algorithms needed to correct the subsampling artifacts affect the nature of noise, i.e., it becomes non-stationary. Some methods have been proposed in the literature dealing with the non-stationary noise in pMRI. However, their performance depends on information not usually available such as multiple acquisitions, receiver noise matrices, sensitivity coil profiles, reconstruction coefficients, or even biophysical models of the data. Besides, some methods show an undesirable granular pattern on the estimates as a side effect of local estimation. Finally, some methods make strong assumptions that just hold in the case of high signal-to-noise ratio (SNR), which limits their usability in real scenarios. We propose a new automatic noise estimation technique for non-stationary Rician noise that overcomes the aforementioned drawbacks. Its effectiveness is due to the derivation of a variance-stabilizing transformation designed to deal with any SNR. The method was compared to the main state-of-the-art methods in synthetic and real scenarios. Numerical results confirm the robustness of the method and its better performance for the whole range of SNRs.

15.
Med Image Anal ; 20(1): 184-97, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25499191

RESUMO

The reliable estimation of noise characteristics in MRI is a task of great importance due to the influence of noise features in extensively used post-processing algorithms. Many methods have been proposed in the literature to retrieve noise features from the magnitude signal. However, most of them assume a stationary noise model, i.e., the features of noise do not vary with the position inside the image. This assumption does not hold when modern scanning techniques are considered, e.g., in the case of parallel reconstruction and intensity correction. Therefore, new noise estimators must be found to cope with non-stationary noise. Some methods have been recently proposed in the literature. However, they require multiple acquisitions or extra information which is usually not available (biophysical models, sensitivity of coils). In this work we overcome this drawback by proposing a new method that can accurately estimate the non-stationary parameters of noise from just a single magnitude image. In the derivation, we considered the noise to follow a non-stationary Rician distribution, since it is the most common model in real acquisitions (e.g., SENSE reconstruction), though it can be easily generalized to other models. The proposed approach makes use of a homomorphic separation of the spatially variant noise in two terms: a stationary noise term and one low frequency signal that correspond to the x-dependent variance of noise. The non-stationary variance of noise is then estimated by a low pass filtering with a Rician bias correction. Results in real and synthetic experiments evidence the better performance and the lowest error variance of the proposed methodology when compared to the state-of-the-art methods.


Assuntos
Imageamento por Ressonância Magnética/métodos , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA