Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(5): 3072-80, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25510325

RESUMO

Ceria (CeO2) is a promising dilute magnetic semiconductor. Several studies report that the intrinsic and extrinsic structural defects are responsible for room temperature ferromagnetism in undoped and transition metal doped CeO2 nanostructures; however, the nature of the kind of defect necessary to promote and stabilize the ferromagnetism in such a system is still a matter of debate. In the work presented here, nanorods from the system Ce1-xCuxO2-δ with x = 0, 0.01, 0.03, 0.05 and 0.10, with the more stable {111} surface exposed were synthesized by a microwave-assisted hydrothermal method. A very careful structure characterization confirms that the Cu in the samples assumes a majority 2+ oxidation state, occupying the Ce (Ce(4+) and Ce(3+)) sites with no secondary phases up to x = 0.05. The inclusion of the Cu(2+) in the CeO2 structure leads to the introduction of oxygen vacancies in a density proportional to the Cu(2+) content. It is supposed that the spatial distribution of the oxygen vacancies follows the Cu(2+) distribution by means of the formation of a defect complex consisting of Cu(2+) ion and an oxygen vacancy. Superconducting quantum interference device magnetometry demonstrated a diamagnetic behavior for the undoped sample and a typical paramagnetic Curie-Weiss behavior with antiferromagnetic interactions between the Cu(2+) ions for the single phase doped samples. We suggest that the presence of oxygen vacancies is not a sufficient condition to mediate ferromagnetism in the CeO2 system, and only oxygen vacancies in the surface of nanostructures would lead to such a long range magnetic order.

2.
J Nanosci Nanotechnol ; 12(9): 6961-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23035421

RESUMO

In the present work, we have reported the effect of Ag NPs seeds on the growth and magnetic properties of Ag-Fe3O4 heterodimer nanoparticles prepared using a two step chemical approach. Three different Ag NPs concentrations have been tried and thoroughly characterized using small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), X-ray diffraction (XRD), dc magnetization, and X-ray absorption near edge spectroscopy (XANES). It is observed that at low concentration, the "flower" types of nanoparticles are more favorable whereas the higher concentration of Ag NPs seeds promotes the growth of dimer type of structures. Our dc magnetization results are well correlated to the structural ones. The sample with lower amount of starting Ag NPs seeds possesses highest blocking and irreversibility temperature. On the other hand, the sample with highest concentration of Ag NPs seeds, the blocking temperature is lowered.

3.
J Nanosci Nanotechnol ; 12(6): 4736-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22905524

RESUMO

Highly hexagonally ordered CoPd alloy nanowire arrays were synthesized through electrochemical deposition techniques into the nanopores of anodic alumina membranes used as templates. Two different electrolytes were used for this purpose, one with pH = 4.1 and the other with pH = 7. Under applying different electrodeposition parameters and by adjusting both, the current density and the electrolyte composition, it could be possible make to vary the composition of CoPd alloy nanowires in a wide range. Their composition and morphology were investigated by SEM and EDX. The magnetic properties of the nanowires array have been measured with a VSM as a function of the temperature, ranging from RT down to 50 K, for different CoPd alloy nanowires composition. Also, the temperature influence on the reversible-irreversible magnetization processes related with the magnetization reversal of the CoPd nanowires array has been analyzed by first order reversal curve (FORC) method.


Assuntos
Cobalto/química , Campos Magnéticos , Nanotubos/química , Nanotubos/ultraestrutura , Paládio/química , Eletrodos , Teste de Materiais , Tamanho da Partícula
4.
Nanotechnology ; 21(3): 035602, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19966407

RESUMO

We report an alternative synthesis method and novel magnetic properties of Ni-oxide nanoparticles (NPs). The NPs were prepared by thermal decomposition of nickel phosphine complexes in a high-boiling-point organic solvent. These particles exhibit an interesting morphology constituted by a crystalline core and a broad disordered superficial shell. Our results suggest that the magnetic behavior is mainly dominated by strong surface effects at low temperature, which become evident through the observation of shifted hysteresis loops (approximately 2.2 kOe), coercivity enhancement (approximately 10.2 kOe) and high field irreversibility (>or=50 kOe). Both an exchange bias and a vertical shift in magnetization can be observed in this system below 35 K after field cooling. Additionally, the exchange bias field shows a linear dependence on the magnetization shift values, which elucidate the role of pinned spins on the exchange fields. The experimental data are analyzed in terms of the interplay between the interface exchange coupling and the antiferromagnetically ordered structure of the core.

5.
J Nanosci Nanotechnol ; 7(1): 272-85, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17455492

RESUMO

Densely packed arrays of magnetic nanowires have been synthesized by electrodeposition filling of nanopores in alumina and titania membranes formed by self-assembling during anodization process. Emphasis is made on the control of the production parameters leading to ordering degree and lattice parameter of the array as well as nanowires diameter and length. Structural, morphological and magnetic properties exhibited by nanowire arrays have been studied for several nanowire compositions, different ordering degree and for different nanowire aspect ratios. The magnetic behaviour of nanowires array is governed by the balance between different energy contributions: shape anisotropy of individual nanowires, the magnetostatic interaction of dipolar origin among nanowires, and magnetocrystalline and magnetoelastic anisotropies induced by the pattern templates. These novel nanocomposites, based on ferromagnetic nanowires embedded in anodic nanoporous templates, are becoming promising candidates for technological applications such as functionalised arrays for magnetic sensing, ultrahigh density magnetic storage media or spin-based electronic devices.


Assuntos
Óxido de Alumínio/química , Alumínio/química , Magnetismo , Nanotecnologia/métodos , Nanofios/química , Titânio/química , Anisotropia , Eletroquímica/métodos , Ferro/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanopartículas/química , Níquel/química , Óxidos/química
6.
Sci Rep ; 7(1): 15306, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127403

RESUMO

Samples of nanostructured ß-Ga wires were synthesized by a novel method of metallic-flux nanonucleation. Several superconducting properties were observed, revealing the stabilization of a weak-coupling type-II-like superconductor ([Formula: see text] [Formula: see text] 6.2 K) with a Ginzburg-Landau parameter [Formula: see text] = 1.18. This contrasts the type-I superconductivity observed for the majority of Ga phases, including small spheres of ß-Ga with diameters near 15 µm. Remarkably, our magnetization curves reveal a crossover field [Formula: see text], where we propose that the Abrikosov vortices are exactly touching their neighbors inside the Ga nanowires. A phenomenological model is proposed to explain this result by assuming that only a single row of vortices is allowed inside a nanowire under perpendicular applied field, with an appreciable depletion of Cooper pair density at the nanowire edges. These results are expected to shed light on the growing area of superconductivity in nanostructured materials.

7.
Sci Rep ; 6: 28364, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329581

RESUMO

This work reports on the dimensionality effects on the magnetic behavior of Fe3Ga4 compounds by means of magnetic susceptibility, electrical resistivity, and specific heat measurements. Our results show that reducing the Fe3Ga4 dimensionality, via nanowire shape, intriguingly modifies its electronic structure. In particular, the bulk system exhibits two transitions, a ferromagnetic (FM) transition temperature at T1 = 50 K and an antiferromagnetic (AFM) one at T2 = 390 K. On the other hand, nanowires shift these transition temperatures, towards higher and lower temperature for T1 and T2, respectively. Moreover, the dimensionality reduction seems to also modify the microscopic nature of the T1 transition. Instead of a FM to AFM transition, as observed in the 3D system, a transition from FM to ferrimagnetic (FERRI) or to coexistence of FM and AFM phases is found for the nanowires. Our results allowed us to propose the magnetic field-temperature phase diagram for Fe3Ga4 in both bulk and nanostructured forms. The interesting microscopic tuning of the magnetic interactions induced by dimensionality in Fe3Ga4 opens a new route to optimize the use of such materials in nanostructured devices.

8.
Rev Sci Instrum ; 84(8): 085120, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24007120

RESUMO

Tailoring magnetic flux distribution is highly desirable in a wide range of applications such as magnetic sensors and biomedicine. In this paper we study the manipulation of induced currents in passive devices in order to engineer the distribution of magnetic flux intensity in a given region. We propose two different approaches, one based on especially designed wire loops (Lenz law) and the other based on solid conductive pieces (eddy currents). The gain of such devices is mainly determined by geometry giving perspective of high amplification. We consistently modeled, simulated, and executed the proposed devices. Doubled magnetic flux intensity is demonstrated experimentally for a moderate aspect ratio.

9.
Rev Sci Instrum ; 82(6): 063904, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721706

RESUMO

We present a setup allowing to characterize the local irreversible behavior of soft magnetic samples. It is achieved by modifying a conventional ac induction magnetometer in order to measure first-order reversal curves (FORCs), a magnetostatic characterization technique. The required modifications were performed on a home-made setup allowing high precision measurement, with sensibility less than 0.005 Oe for the applied field and 10(-6) emu for the magnetization. The main crucial point for the FORCs accuracy is the constancy of the applied field sweep rate, because of the magnetic viscosity. Therefore, instead of the common way to work at constant frequency, each FORC is acquired at a slightly different frequency, in order to keep the field variation constant in time. The obtained results exhibit the consequences of magnetic viscosity, thus opening up the path of studying this phenomenon for soft magnetic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA