Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35148840

RESUMO

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismo
2.
Nat Immunol ; 22(11): 1391-1402, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34686865

RESUMO

Epithelial cells have an ability termed 'cell competition', which is an immune surveillance-like function that extrudes precancerous cells from the epithelial layer, leading to apoptosis and clearance. However, it remains unclear how epithelial cells recognize and extrude transformed cells. Here, we discovered that a PirB family protein, leukocyte immunoglobulin-like receptor B3 (LILRB3), which is expressed on non-transformed epithelial cells, recognizes major histocompatibility complex class I (MHC class I) that is highly expressed on transformed cells. MHC class I interaction with LILRB3 expressed on normal epithelial cells triggers an SHP2-ROCK2 pathway that generates a mechanical force to extrude transformed cells. Removal of transformed cells occurs independently of natural killer (NK) cell or CD8+ cytotoxic T cell-mediated activity. This is a new mechanism in that the immunological ligand-receptor system generates a mechanical force in non-immune epithelial cells to extrude precancerous cells in the same epithelial layer.


Assuntos
Antígenos CD/metabolismo , Apoptose , Competição entre as Células , Células Epiteliais/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias Pulmonares/metabolismo , Lesões Pré-Cancerosas/metabolismo , Receptores Imunológicos/metabolismo , Animais , Antígenos CD/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cães , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células HaCaT , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Células Madin Darby de Rim Canino , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Células RAW 264.7 , Receptores Imunológicos/genética , Estresse Mecânico , Quinases Associadas a rho/metabolismo
3.
Annu Rev Cell Dev Biol ; 34: 163-188, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30110557

RESUMO

Molecular biologists and chemists alike have long sought to modify proteins with substituents that cannot be installed by standard or even advanced genetic approaches. We here describe the use of transpeptidases to achieve these goals. Living systems encode a variety of transpeptidases and peptide ligases that allow for the enzyme-catalyzed formation of peptide bonds, and protein engineers have used directed evolution to enhance these enzymes for biological applications. We focus primarily on the transpeptidase sortase A, which has become popular over the past few years for its ability to perform a remarkably wide variety of protein modifications, both in vitro and in living cells.


Assuntos
Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Peptídeos/genética , Peptidil Transferases/genética , Sequência de Aminoácidos/genética , Aminoaciltransferases/química , Proteínas de Bactérias/química , Catálise , Cisteína Endopeptidases/química , Humanos , Peptídeos/química , Peptidil Transferases/química , Engenharia de Proteínas , Especificidade por Substrato
4.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915108

RESUMO

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Celular , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Receptor Notch4/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Anfirregulina/farmacologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Pneumonia Viral/patologia , Receptor Notch4/antagonistas & inibidores , Receptor Notch4/genética , Índice de Gravidade de Doença
5.
Proc Natl Acad Sci U S A ; 119(43): e2211065119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252038

RESUMO

The distribution of Ly6C/G-positive cells in response to an infection of the mouse respiratory tract with influenza A virus was followed noninvasively over time by immuno-positron emission tomography. We converted nanobodies that recognize Ly6C and Ly6G, markers of neutrophils and other myeloid cells, as well as an influenza hemagglutinin-specific nanobody, into 89Zr-labeled PEGylated positron emission tomography (PET) imaging agents. The PET images showed strong accumulation of these imaging agents in the lungs of infected mice. Immunohistochemistry of influenza virus-infected mice and control mice, injected with a biotinylated and PEGylated version of the Ly6C/G-specific nanobody, showed the presence of abundant Ly6C/G-positive myeloid cells and positivity for Ly6C/G on bronchial epithelium in influenza virus-infected mice. This is consistent with focal inflammation in the lungs, a finding that correlated well with the immuno-PET results. No such signals were detected in control mice. Having shown by PET the accumulation of the Ly6C/G-specific nanobody in infected lungs, we synthesized conjugates of Ly6C/G-specific nanobodies with dexamethasone to enable targeted delivery of this immunosuppressive corticosteroid to sites of inflammation. Such conjugates reduced the weight loss that accompanies infection, while the equivalent amount of free dexamethasone was without effect. Nanobody-drug conjugates thus enable delivery of drugs to particular cell types at the appropriate anatomic site(s). By avoiding systemic exposure to free dexamethasone, this strategy minimizes its undesirable side effects because of the much lower effective dose of the nanobody-dexamethasone conjugate. The ability to selectively target inflammatory cells may find application in the treatment of other infections or other immune-mediated diseases.


Assuntos
Influenza Humana , Anticorpos de Domínio Único , Corticosteroides , Animais , Anti-Inflamatórios , Dexametasona/farmacologia , Hemaglutininas , Humanos , Inflamação/tratamento farmacológico , Camundongos , Polietilenoglicóis
6.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417313

RESUMO

When displayed on erythrocytes, peptides and proteins can drive antigen-specific immune tolerance. Here, we investigated a straightforward approach based on erythrocyte binding to promote antigen-specific tolerance to both peptides and proteins. We first identified a robust erythrocyte-binding ligand. A pool of one million fully d-chiral peptides was injected into mice, blood cells were isolated, and ligands enriched on these cells were identified using nano-liquid chromatography-tandem mass spectrometry. One round of selection yielded a murine erythrocyte-binding ligand with an 80 nM apparent dissociation constant, Kd We modified an 83-kDa bacterial protein and a peptide antigen derived from ovalbumin (OVA) with the identified erythrocyte-binding ligand. An administration of the engineered bacterial protein led to decreased protein-specific antibodies in mice. Similarly, mice given the engineered OVA-derived peptide had decreased inflammatory anti-OVA CD8+ T cell responses. These findings suggest that our tolerance-induction strategy is applicable to both peptide and protein antigens and that our in vivo selection strategy can be used for de novo discovery of robust erythrocyte-binding ligands.


Assuntos
Antígenos/genética , Antígenos/metabolismo , Eritrócitos/metabolismo , Engenharia de Proteínas/métodos , Animais , Antígenos/química , Linhagem Celular , Bases de Dados Factuais , Feminino , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ligação Proteica
7.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34654739

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 100 million infections and millions of deaths. Effective vaccines remain the best hope of curtailing SARS-CoV-2 transmission, morbidity, and mortality. The vaccines in current use require cold storage and sophisticated manufacturing capacity, which complicates their distribution, especially in less developed countries. We report the development of a candidate SARS-CoV-2 vaccine that is purely protein based and directly targets antigen-presenting cells. It consists of the SARS-CoV-2 Spike receptor-binding domain (SpikeRBD) fused to an alpaca-derived nanobody that recognizes class II major histocompatibility complex antigens (VHHMHCII). This vaccine elicits robust humoral and cellular immunity against SARS-CoV-2 and its variants. Both young and aged mice immunized with two doses of VHHMHCII-SpikeRBD elicit high-titer binding and neutralizing antibodies. Immunization also induces strong cellular immunity, including a robust CD8 T cell response. VHHMHCII-SpikeRBD is stable for at least 7 d at room temperature and can be lyophilized without loss of efficacy.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , COVID-19/imunologia , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/epidemiologia , Vacinas contra COVID-19/administração & dosagem , Camelídeos Americanos/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Imunização Secundária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pandemias/prevenção & controle , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , SARS-CoV-2/genética , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
8.
J Immunol ; 207(5): 1468-1477, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34408009

RESUMO

Immuno-positron emission tomography (PET), a noninvasive imaging modality, can provide a dynamic approach for longitudinal assessment of cell populations of interest. Transformation of mAbs into single-chain variable fragment (scFv)-based PET imaging agents would allow noninvasive tracking in vivo of a wide range of possible targets. We used sortase-mediated enzymatic labeling in combination with PEGylation to develop an anti-mouse CD4 scFv-based PET imaging agent constructed from an anti-mouse CD4 mAb. This anti-CD4 scFv can monitor the in vivo distribution of CD4+ T cells by immuno-PET. We tracked CD4+ and CD8+ T cells in wild-type mice, in immunodeficient recipients reconstituted with monoclonal populations of OT-II and OT-I T cells, and in a B16 melanoma model. Anti-CD4 and -CD8 immuno-PET showed that the persistence of both CD4+ and CD8+ T cells transferred into immunodeficient mice improved when recipients were immunized with OVA in CFA. In tumor-bearing animals, infiltration of both CD4+ and CD8+ T cells increased as the tumor grew. The approach described in this study should be readily applicable to convert clinically useful Abs into the corresponding scFv PET imaging agents.


Assuntos
Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/imunologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/terapia , Monitorização Imunológica/métodos , Neoplasias Cutâneas/terapia , Animais , Anticorpos Monoclonais/metabolismo , Diagnóstico por Imagem , Feminino , Memória Imunológica , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tomografia por Emissão de Pósitrons , Anticorpos de Cadeia Única/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(16): 7624-7631, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936321

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has been successful in clinical trials against hematological cancers, but has experienced challenges in the treatment of solid tumors. One of the main difficulties lies in a paucity of tumor-specific targets that can serve as CAR recognition domains. We therefore focused on developing VHH-based, single-domain antibody (nanobody) CAR T cells that target aspects of the tumor microenvironment conserved across multiple cancer types. Many solid tumors evade immune recognition through expression of checkpoint molecules, such as PD-L1, that down-regulate the immune response. We therefore targeted CAR T cells to the tumor microenvironment via the checkpoint inhibitor PD-L1 and observed a reduction in tumor growth, resulting in improved survival. CAR T cells that target the tumor stroma and vasculature through the EIIIB+ fibronectin splice variant, which is expressed by multiple tumor types and on neovasculature, are likewise effective in delaying tumor growth. VHH-based CAR T cells can thus function as antitumor agents for multiple targets in syngeneic, immunocompetent animal models. Our results demonstrate the flexibility of VHH-based CAR T cells and the potential of CAR T cells to target the tumor microenvironment and treat solid tumors.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Camundongos , Neoplasias Experimentais , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Blood ; 131(26): 2955-2966, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29712634

RESUMO

Red cells contain a unique constellation of membrane lipids. Although much is known about regulated protein expression, the regulation of lipid metabolism during erythropoiesis is poorly studied. Here, we show that transcription of PHOSPHO1, a phosphoethanolamine and phosphocholine phosphatase that mediates the hydrolysis of phosphocholine to choline, is strongly upregulated during the terminal stages of erythropoiesis of both human and mouse erythropoiesis, concomitant with increased catabolism of phosphatidylcholine (PC) and phosphocholine as shown by global lipidomic analyses of mouse and human terminal erythropoiesis. Depletion of PHOSPHO1 impaired differentiation of fetal mouse and human erythroblasts, and, in adult mice, depletion impaired phenylhydrazine-induced stress erythropoiesis. Loss of PHOSPHO1 also impaired phosphocholine catabolism in mouse fetal liver progenitors and resulted in accumulation of several lipids; adenosine triphosphate (ATP) production was reduced as a result of decreased oxidative phosphorylation. Glycolysis replaced oxidative phosphorylation in PHOSPHO1-knockout erythroblasts and the increased glycolysis was used for the production of serine or glycine. Our study elucidates the dynamic changes in lipid metabolism during terminal erythropoiesis and reveals the key roles of PC and phosphocholine metabolism in energy balance and amino acid supply.


Assuntos
Eritroblastos/metabolismo , Eritropoese , Fosforilcolina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Eritroblastos/citologia , Deleção de Genes , Glicólise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação Oxidativa , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(38): 10184-10189, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874561

RESUMO

CD47 is an antiphagocytic ligand broadly expressed on normal and malignant tissues that delivers an inhibitory signal through the receptor signal regulatory protein alpha (SIRPα). Inhibitors of the CD47-SIRPα interaction improve antitumor antibody responses by enhancing antibody-dependent cellular phagocytosis (ADCP) in xenograft models. Endogenous expression of CD47 on a variety of cell types, including erythrocytes, creates a formidable antigen sink that may limit the efficacy of CD47-targeting therapies. We generated a nanobody, A4, that blocks the CD47-SIRPα interaction. A4 synergizes with anti-PD-L1, but not anti-CTLA4, therapy in the syngeneic B16F10 melanoma model. Neither increased dosing nor half-life extension by fusion of A4 to IgG2a Fc (A4Fc) overcame the issue of an antigen sink or, in the case of A4Fc, systemic toxicity. Generation of a B16F10 cell line that secretes the A4 nanobody showed that an enhanced response to several immune therapies requires near-complete blockade of CD47 in the tumor microenvironment. Thus, strategies to localize CD47 blockade to tumors may be particularly valuable for immune therapy.


Assuntos
Antígeno CD47/antagonistas & inibidores , Imunoterapia/métodos , Melanoma Experimental/terapia , Anticorpos de Domínio Único/uso terapêutico , Anemia/induzido quimicamente , Animais , Antígeno CD47/imunologia , Avaliação Pré-Clínica de Medicamentos , Camundongos Endogâmicos C57BL , Fagocitose , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Microambiente Tumoral
12.
Proc Natl Acad Sci U S A ; 114(12): 3157-3162, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28270614

RESUMO

Current therapies for autoimmune diseases rely on traditional immunosuppressive medications that expose patients to an increased risk of opportunistic infections and other complications. Immunoregulatory interventions that act prophylactically or therapeutically to induce antigen-specific tolerance might overcome these obstacles. Here we use the transpeptidase sortase to covalently attach disease-associated autoantigens to genetically engineered and to unmodified red blood cells as a means of inducing antigen-specific tolerance. This approach blunts the contribution to immunity of major subsets of immune effector cells (B cells, CD4+ and CD8+ T cells) in an antigen-specific manner. Transfusion of red blood cells expressing self-antigen epitopes can alleviate and even prevent signs of disease in experimental autoimmune encephalomyelitis, as well as maintain normoglycemia in a mouse model of type 1 diabetes.

13.
Proc Natl Acad Sci U S A ; 111(11): 4103-8, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591581

RESUMO

Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse erythropoiesis. We performed a comparative global gene expression study using data from morphologically identical stage-matched sorted populations of human and mouse erythroid precursors from early to late erythroblasts. Induction and repression of major transcriptional regulators of erythropoiesis, as well as major erythroid-important proteins, are largely conserved between the species. In contrast, at a global level we identified a significant extent of divergence between the species, both at comparable stages and in the transitions between stages, especially for the 500 most highly expressed genes during development. This suggests that the response of multiple developmentally regulated genes to key erythroid transcriptional regulators represents an important modification that has occurred in the course of erythroid evolution. In developing a systematic framework to understand and study conservation and divergence between human and mouse erythropoiesis, we show how mouse models can fail to mimic specific human diseases and provide predictions for translating findings from mouse models to potential therapies for human disease.


Assuntos
Células Precursoras Eritroides/metabolismo , Eritropoese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Transcriptoma/genética , Animais , Western Blotting , Eritropoese/genética , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Camundongos , Análise em Microsséries , Especificidade da Espécie
14.
Proc Natl Acad Sci U S A ; 111(28): 10131-6, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982154

RESUMO

We developed modified RBCs to serve as carriers for systemic delivery of a wide array of payloads. These RBCs contain modified proteins on their plasma membrane, which can be labeled in a sortase-catalyzed reaction under native conditions without inflicting damage to the target membrane or cell. Sortase accommodates a wide range of natural and synthetic payloads that allow modification of RBCs with substituents that cannot be encoded genetically. As proof of principle, we demonstrate site-specific conjugation of biotin to in vitro-differentiated mouse erythroblasts as well as to mature mouse RBCs. Thus modified, RBCs remain in the bloodstream for up to 28 d. A single domain antibody attached enzymatically to RBCs enables them to bind specifically to target cells that express the antibody target. We extend these experiments to human RBCs and demonstrate efficient sortase-mediated labeling of in vitro-differentiated human reticulocytes.


Assuntos
Diferenciação Celular , Engenharia Celular , Eritroblastos/metabolismo , Membrana Eritrocítica/metabolismo , Reticulócitos/metabolismo , Animais , Células Cultivadas , Membrana Eritrocítica/genética , Humanos , Camundongos
15.
Front Immunol ; 15: 1368586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550583

RESUMO

MICA and MICB are Class I MHC-related glycoproteins that are upregulated on the surface of cells in response to stress, for instance due to infection or malignant transformation. MICA/B are ligands for NKG2D, an activating receptor on NK cells, CD8+ T cells, and γδ T cells. Upon engagement of MICA/B with NKG2D, these cytotoxic cells eradicate MICA/B-positive targets. MICA is frequently overexpressed on the surface of cancer cells of epithelial and hematopoietic origin. Here, we created nanobodies that recognize MICA. Nanobodies, or VHHs, are the recombinantly expressed variable regions of camelid heavy chain-only immunoglobulins. They retain the capacity of antigen recognition but are characterized by their stability and ease of production. The nanobodies described here detect surface-disposed MICA on cancer cells in vitro by flow cytometry and can be used therapeutically as nanobody-drug conjugates when fused to the Maytansine derivative DM1. The nanobody-DM1 conjugate selectively kills MICA positive tumor cells in vitro.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Linfócitos T CD8-Positivos , Anticorpos de Domínio Único/uso terapêutico , Antígenos de Histocompatibilidade Classe I , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias/diagnóstico , Neoplasias/terapia , Imunoterapia
16.
Nat Rev Immunol ; 22(12): 751-764, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35418563

RESUMO

Antigen processing and presentation are the cornerstones of adaptive immunity. B cells cannot generate high-affinity antibodies without T cell help. CD4+ T cells, which provide such help, use antigen-specific receptors that recognize major histocompatibility complex (MHC) molecules in complex with peptide cargo. Similarly, eradication of virus-infected cells often depends on cytotoxic CD8+ T cells, which rely on the recognition of peptide-MHC complexes for their action. The two major classes of glycoproteins entrusted with antigen presentation are the MHC class I and class II molecules, which present antigenic peptides to CD8+ T cells and CD4+ T cells, respectively. This Review describes the essentials of antigen processing and presentation. These pathways are divided into six discrete steps that allow a comparison of the various means by which antigens destined for presentation are acquired and how the source proteins for these antigens are tagged for degradation, destroyed and ultimately displayed as peptides in complex with MHC molecules for T cell recognition.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos , Humanos , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade Classe I , Antígenos , Peptídeos , Antígenos de Histocompatibilidade Classe II
17.
Res Sq ; 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313592

RESUMO

SARS-CoV-2 infection leads to a broad range of outcomes and immune responses, with the development of neutralizing antibodies generally correlated with protection against reinfection. Here, we have characterized both neutralizing activity and T cell responses in a cluster of subjects with mild disease linked to a single spreading event. Surprisingly, we observed sex-specific associations between spike- and particularly nucleoprotein-specific T cell responses and neutralization, with pro-inflammatory cytokines being linked to higher titers only in males. Using single cell immunoprofiling, which provided matched transcriptome and T-cell receptor (TCR) profiles in restimulated CD4 + and CD8 + cells from these subjects, we identified differences in type I IFN signaling that may underlie this difference in antibody generation. Finally, we also identified several TCRs associated with cytokine producing T cells. Altogether, our work maps the breadth of immunological outcomes of SARS-CoV2 infections and highlight the potential role of sex-specific feedback loops during the generation of neutralizing antibodies.

18.
Sci Immunol ; 7(76): eadd5446, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35951767

RESUMO

SARS-CoV-2 Omicron subvariants have generated a worldwide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of vaccination-induced antibodies. To manage Omicron subvariants and prepare for new ones, additional means of isolating broad and potent humanized SARS-CoV-2 neutralizing antibodies are desirable. Here, we describe a mouse model in which the primary B cell receptor (BCR) repertoire is generated solely through V(D)J recombination of a human VH1-2 heavy chain (HC) and, substantially, a human Vκ1-33 light chain (LC). Thus, primary humanized BCR repertoire diversity in these mice derives from immensely diverse HC and LC antigen-contact CDR3 sequences generated by nontemplated junctional modifications during V(D)J recombination. Immunizing this mouse model with SARS-CoV-2 (Wuhan-Hu-1) spike protein immunogens elicited several VH1-2/Vκ1-33-based neutralizing antibodies that bound RBD in a different mode from each other and from those of many prior patient-derived VH1-2-based neutralizing antibodies. Of these, SP1-77 potently and broadly neutralized all SARS-CoV-2 variants through BA.5. Cryo-EM studies revealed that SP1-77 bound RBD away from the receptor-binding motif via a CDR3-dominated recognition mode. Lattice light-sheet microscopy-based studies showed that SP1-77 did not block ACE2-mediated viral attachment or endocytosis but rather blocked viral-host membrane fusion. The broad and potent SP1-77 neutralization activity and nontraditional mechanism of action suggest that it might have therapeutic potential. Likewise, the SP1-77 binding epitope may inform vaccine strategies. Last, the type of humanized mouse models that we have described may contribute to identifying therapeutic antibodies against future SARS-CoV-2 variants and other pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2 , Fusão de Membrana , Anticorpos Antivirais , Anticorpos Neutralizantes , Epitopos , Receptores de Antígenos de Linfócitos B
20.
RSC Chem Biol ; 2(3): 685-701, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34212147

RESUMO

In vivo imaging has become in recent years an incredible tool to study biological events and has found critical applications in diagnostic medicine. Although a lot of efforts and applications have been achieved using monoclonal antibodies, other types of delivery agents are being developed. Among them, VHHs, antigen binding fragments derived from camelid heavy chain-only antibodies, also known as nanobodies, have particularly attracted attention. Indeed, their stability, fast clearance, good tissue penetration, high solubility, simple cloning and recombinant production make them attractive targeting agents for imaging modalities such as PET, SPECT or Infra-Red. In this review, we discuss the pioneering work that has been carried out using VHHs and summarize the recent developments that have been made using nanobodies for in vivo, non-invasive, imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA