Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 238(8): 1921-1936, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269459

RESUMO

Podocytes are crucially involved in blood filtration in the glomerulus. Their proper function relies on efficient insulin responsiveness. The insulin resistance of podocytes, defined as a reduction of cell sensitivity to this hormone, is the earliest pathomechanism of microalbuminuria that is observed in metabolic syndrome and diabetic nephropathy. In many tissues, this alteration is mediated by the phosphate homeostasis-controlling enzyme nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). By binding to the insulin receptor (IR), NPP1 inhibits downstream cellular signaling. Our previous research found that hyperglycemic conditions affect another protein that is involved in phosphate balance, type III sodium-dependent phosphate transporter 1 (Pit 1). In the present study, we evaluated the insulin resistance of podocytes after 24 h of incubation under hyperinsulinemic conditions. Thereafter, insulin signaling was inhibited. The formation of NPP1/IR complexes was observed at that time. A novel finding in the present study was our observation of an interaction between NPP1 and Pit 1 after the 24 h stimulation of podocytes with insulin. After downregulation of the SLC20A1 gene, which encodes Pit 1, we established insulin resistance in podocytes that were cultured under native conditions, manifested as a lack of intracellular insulin signaling and the inhibition of glucose uptake via the glucose transporter type 4. These findings suggest that Pit 1 might be a major factor that participates in the NPP1-mediated inhibition of insulin signaling.


Assuntos
Nefropatias Diabéticas , Resistência à Insulina , Podócitos , Humanos , Insulina/farmacologia , Insulina/metabolismo , Podócitos/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Nefropatias Diabéticas/metabolismo , Fosfatos/metabolismo , Glucose/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
2.
Biochem Biophys Res Commun ; 679: 145-159, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37696068

RESUMO

Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.


Assuntos
Podócitos , Ratos , Animais , Podócitos/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Lisossomos/metabolismo , Transdução de Sinais , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo
3.
Anal Biochem ; 681: 115337, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783443

RESUMO

ADAM17 (a disintegrin and metalloproteinase 17) is a sheddase that releases various types of membrane-associated proteins, including adhesive molecules, cytokines and their receptors, and inflammatory mediators. Evidence suggests that the enzyme is involved in the proteolytic cleavage of antiaging transmembrane protein Klotho (KL). What is more, reduced serum and urinary KL levels are observed in the early stages of chronic kidney disease. This study aimed to optimise the ADAM17 specific and selective fluorescent substrates. Then, the obtained substrate was used to detect the enzyme in urine samples of patients diagnosed with diabetes. It turned out that in all cases we were able to detect proteolytic activity, which was the opposite of the healthy samples.


Assuntos
Diabetes Mellitus , Humanos , Proteína ADAM17 , Diabetes Mellitus/diagnóstico , Proteínas de Membrana , Proteólise
4.
Bioorg Chem ; 140: 106826, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666108

RESUMO

Diabetes mellitus (DM) is a disease of civilization. If left untreated, it can cause serious complications and significantly shortens the life time. DM is one of the leading causes of end-stage renal disease (uremia) worldwide. Early diagnosis is a prerequisite for successful treatment, preferably before the first symptoms appear. In this paper, we describe the optimization and synthesis of the internally quenched fluorescent substrate disintegrin and metalloproteinase 10 (ADAM10). Using combinatorial chemistry methods with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. We used the ABZ-Lys-Ile-Ile-Asn-Leu-Lys-Arg-Tyr(3-NO2)-NH2 peptide to study ADAM10 activity in urine samples collected from patients diagnosed with type 2 diabetes, compared to urine samples from healthy volunteers. The proteolytically active enzyme was present in diabetes samples, while in the case of healthy people we did not observe any activity. In conclusion, our study provides a possible basis for further research into the potential role of ADAM10 in the diagnosis of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Corantes , Técnicas de Química Combinatória , Voluntários Saudáveis , Especificidade por Substrato
5.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835364

RESUMO

The permeability of the glomerular filtration barrier (GFB) is mainly regulated by podocytes and their foot processes. Protein kinase G type Iα (PKGIα) and adenosine monophosphate-dependent kinase (AMPK) affect the contractile apparatus of podocytes and influence the permeability of the GFB. Therefore, we studied the interplay between PKGIα and AMPK in cultured rat podocytes. The glomerular permeability to albumin and transmembrane FITC-albumin flux decreased in the presence of AMPK activators and increased in the presence of PKG activators. The knockdown of PKGIα or AMPK with small-interfering RNA (siRNA) revealed a mutual interaction between PKGIα and AMPK and influenced podocyte permeability to albumin. Moreover, PKGIα siRNA activated the AMPK-dependent signaling pathway. AMPKα2 siRNA increased basal levels of phosphorylated myosin phosphate target subunit 1 and decreased the phosphorylation of myosin light chain 2. Podocytes that were treated with AMPK or PKG activators were characterized by the different organization of actin filaments within the cell. Our findings suggest that mutual interactions between PKGIα and AMPKα2 regulate the contractile apparatus and permeability of the podocyte monolayer to albumin. Understanding this newly identified molecular mechanism in podocytes provides further insights into the pathogenesis of glomerular disease and novel therapeutic targets for glomerulopathies.


Assuntos
Albuminas , Proteína Quinase Dependente de GMP Cíclico Tipo I , Podócitos , Animais , Ratos , Monofosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Permeabilidade , Podócitos/metabolismo , Ratos Wistar , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Albuminas/metabolismo
6.
J Cell Physiol ; 237(11): 4097-4111, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084306

RESUMO

Podocytes and their foot processes are an important cellular layer of the renal filtration barrier that is involved in regulating glomerular permeability. Disturbances of podocyte function play a central role in the development of proteinuria in diabetic nephropathy. The retraction and effacement of podocyte foot processes that form slit diaphragms are a common feature of proteinuria. Correlations between the retraction of foot processes and the development of proteinuria are not well understood. Unraveling peculiarities of podocyte energy metabolism notably under diabetic conditions will provide insights into the pathogenesis of diabetic nephropathy. Intracellular metabolism in the cortical area of podocytes is regulated by glycolysis, whereas energy balance in the central area is controlled by oxidative phosphorylation and glycolysis. High glucose concentrations were recently reported to force podocytes to switch from mitochondrial oxidative phosphorylation to glycolysis, resulting in lactic acidosis. In this review, we hypothesize that the lactate receptor G-protein-coupled receptor 81 (also known as hydroxycarboxylic acid receptor 81) may contribute to the control of podocyte function in both health and disease.


Assuntos
Nefropatias Diabéticas , Podócitos , Humanos , Podócitos/metabolismo , Nefropatias Diabéticas/metabolismo , Ácido Láctico/metabolismo , Proteinúria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
J Cell Physiol ; 237(5): 2478-2491, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150131

RESUMO

Soft tissue calcification is a pathological phenomenon that often occurs in end-stage chronic kidney disease (CKD), which is caused by diabetic nephropathy, among other factors. Hyperphosphatemia present during course of CKD contributes to impairments in kidney function, particularly damages in the glomerular filtration barrier (GFB). Essential elements of the GFB include glomerular epithelial cells, called podocytes. In the present study, we found that human immortalized podocytes express messenger RNA and protein of phosphate transporters, including NaPi 2c (SLC34A3), Pit 1 (SLC20A1), and Pit 2 (SLC20A2), which are sodium-dependent and mediate intracellular phosphate (Pi) transport, and XPR1, which is responsible for extracellular Pi transport. We found that cells that were grown in a medium with a high glucose (HG) concentration (30 mM) expressed less Pit 1 and Pit 2 protein than podocytes that were cultured in a standard glucose medium (11 mM). We found that exposure of the analyzed transporters in the cell membrane of the podocyte is altered by HG conditions. We also found that the activity of tissue nonspecific alkaline phosphatase increased in HG, causing a rise in Pi generation. Additionally, HG led to a reduction of the amount of ectonucleotide pyrophosphatase/phosphodiesterase 1 in the cell membrane of podocytes. The extracellular concentration of pyrophosphate also decreased under HG conditions. These data suggest that a hyperglycemic environment enhances the production of Pi in podocytes and its retention in the extracellular space, which may induce glomerular calcification.


Assuntos
Calcinose , Podócitos , Insuficiência Renal Crônica , Calcinose/metabolismo , Glucose/metabolismo , Humanos , Glomérulos Renais/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/patologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
8.
Exp Cell Res ; 407(1): 112758, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34437881

RESUMO

Podocytes constitute the outer layer of the renal glomerular filtration barrier. Their energy requirements strongly depend on efficient oxidative respiration, which is tightly connected with mitochondrial dynamics. We hypothesized that hyperglycemia modulates energy metabolism in glomeruli and podocytes and contributes to the development of diabetic kidney disease. We found that oxygen consumption rates were severely reduced in glomeruli from diabetic rats and in human podocytes that were cultured in high glucose concentration (30 mM; HG). In these models, all of the mitochondrial respiratory parameters, including basal and maximal respiration, ATP production, and spare respiratory capacity, were significantly decreased. Podocytes that were treated with HG showed a fragmented mitochondrial network, together with a decrease in expression of the mitochondrial fusion markers MFN1, MFN2, and OPA1, and an increase in the activity of the fission marker DRP1. We showed that markers of mitochondrial biogenesis, such as PGC-1α and TFAM, decreased in HG-treated podocytes. Moreover, PINK1/parkin-dependent mitophagy was inhibited in these cells. These results provide evidence that hyperglycemia impairs mitochondrial dynamics and turnover, which may underlie the remarkable deterioration of mitochondrial respiration parameters in glomeruli and podocytes.


Assuntos
Hiperglicemia/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Podócitos/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Humanos , Rim/metabolismo , Masculino , Proteínas Quinases/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
9.
J Cell Physiol ; 236(10): 7176-7185, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33738792

RESUMO

The sodium-dependent phosphate transporters Pit 1 and Pit 2 belong to the solute carrier 20 (SLC20) family of membrane proteins. They are ubiquitously distributed in the human body. Their crucial function is the intracellular transport of inorganic phosphate (Pi) in the form of H2 PO4- . They are one of the main elements in maintaining physiological phosphate homeostasis. Recent data have emerged that indicate novel roles of Pit 1 and Pit 2 proteins besides the well-known function of Pi transporters. These membrane proteins are believed to be precise phosphate sensors that mediate Pi-dependent intracellular signaling. They are also involved in insulin signaling and influence cellular insulin sensitivity. In diseases that are associated with hyperphosphatemia, such as diabetes and chronic kidney disease (CKD), disturbances in the function of Pit 1 and Pit 2 are observed. Phosphate transporters from the SLC20 family participate in the calcification of soft tissues, mainly blood vessels, during the course of CKD. The glomerulus and podocytes therein can also be a target of pathological calcification that damages these structures. A few studies have demonstrated the development of Pi-dependent podocyte injury that is mediated by Pit 1 and Pit 2. This paper discusses the role of Pit 1 and Pit 2 proteins in podocyte function, mainly in the context of the development of pathological calcification that disrupts permeability of the renal filtration barrier. We also describe the mechanisms that may contribute to podocyte damage by Pit 1 and Pit 2.


Assuntos
Hiperfosfatemia/metabolismo , Rim/metabolismo , Fosfatos/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Calcificação Vascular/metabolismo , Homeostase , Humanos , Hiperfosfatemia/patologia , Hiperfosfatemia/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Masculino , Podócitos/patologia , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Calcificação Vascular/patologia , Calcificação Vascular/fisiopatologia
10.
J Cell Physiol ; 236(6): 4655-4668, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33244808

RESUMO

Insulin plays a major role in regulating glucose homeostasis in podocytes. Protein kinase G type Iα (PKGIα) plays an important role in regulating glucose uptake in these cells. Rac1 signaling plays an essential role in the reorganization of the actin cytoskeleton and is also essential for insulin-stimulated glucose transport. The experiments were conducted using primary rat podocytes. We performed western blot analysis, evaluated small GTPases activity assays, measured radioactive glucose uptake, and performed immunofluorescence imaging to analyze the role of PKGIα-Rac1 signaling in regulating podocyte function. We also utilized a small-interfering RNA-mediated approach to determine the role of PKGIα and Rac1 in regulating glucose uptake in podocytes. The present study investigated the influence of the PKGI pathway on the insulin-dependent regulation of activity and cellular localization of small guanosine triphosphatases in podocytes. We found that the PKGIα-dependent activation of Rac1 signaling induced activation of the PAK/cofilin pathway and increased insulin-mediated glucose uptake in podocytes. The downregulation of PKGIα or Rac1 expression abolished this effect. Rac1 silencing prevented actin remodeling and GLUT4 translocation close to the cell membrane. These data provide evidence that PKGIα-dependent activation of the Rac1 signaling pathways is a novel regulator of insulin-mediated glucose uptake in cultured rat podocytes.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Podócitos/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Células Cultivadas , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Feminino , Podócitos/enzimologia , Transporte Proteico , Ratos Wistar , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/genética
11.
Arch Biochem Biophys ; 714: 109078, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742673

RESUMO

The purinergic activation of P2 receptors initiates a powerful and rapid signaling cascade that contributes to the regulation of an array of physiological and pathophysiological processes in many organs, including the kidney. P2 receptors are broadly distributed in both epithelial and vascular renal cells. Disturbances of purinergic signaling can lead to impairments in renal function. A growing body of evidence indicates changes in P2 receptor expression and nucleotide metabolism in chronic renal injury and inflammatory diseases. Increasing attention has focused on purinergic P2X7 receptors, which are not normally expressed in healthy kidney tissue but are highly expressed at sites of tissue damage and inflammation. Under hyperglycemic conditions, several mechanisms that are linked to purinergic signaling and involve nucleotide release and degradation are disrupted, resulting in the accumulation of adenosine 5'-triphosphate in the bloodstream in diabetes. Dysfunction of the purinergic system might be associated with serious vascular complications in diabetes, including diabetic nephropathy. This review summarizes our current knowledge of the role of P2 receptors in diabetes-related glomerular injury and its implications for new therapeutics for diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Receptores Purinérgicos P2/metabolismo , Animais , Humanos , Transdução de Sinais
12.
Arch Biochem Biophys ; 709: 108985, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34252390

RESUMO

The protein deacetylase sirtuin 1 (SIRT1) and adenosine monophosphate-dependent protein kinase (AMPK) play important roles in the development of insulin resistance. In glomerular podocytes, crosstalk between these two enzymes may be altered under hyperglycemic conditions. SIRT1 protein levels and activity and AMPK phosphorylation decrease under hyperglycemic conditions, with concomitant inhibition of the effect of insulin on glucose uptake into these cells. Nitric oxide (NO)-dependent regulatory signaling pathways have been shown to be downregulated under diabetic conditions. The present study examined the involvement of the NO synthase (NOS)/NO pathway in the regulation of SIRT1-AMPK signaling and glucose uptake in podocytes. We examined the effects of NOS/NO pathway alterations on SIRT1/AMPK signaling and glucose uptake using pharmacological tools and a small-interfering transfection approach. We also examined the ability of the NOS/NO pathway to protect podocytes against high glucose-induced alterations of SIRT1/AMPK signaling and insulin-dependent glucose uptake. Inhibition of the NOS/NO pathway reduced SIRT1 protein levels and activity, leading to a decrease in AMPK phosphorylation and blockade of the effect of insulin on glucose uptake. Treatment with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) prevented high glucose-induced decreases in SIRT1 and AMPK activity and increased GLUT4 protein expression, thereby improving glucose uptake in podocytes. These findings suggest that inhibition of the NOS/NO pathway may result in alterations of the effects of insulin on glucose uptake in podocytes. In turn, the enhancement of NOS/NO pathway activity may prevent these deleterious effects of high glucose concentrations, thus bidirectionally stimulating the SIRT1-AMPK reciprocal activation loop.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Podócitos/metabolismo , Sirtuína 1/metabolismo , Animais , Regulação para Baixo/fisiologia , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Ratos , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transdução de Sinais , Sirtuína 1/genética
13.
Biomarkers ; 26(8): 770-779, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704886

RESUMO

BACKGROUND: Bladder cancer (BC) is one of the 10 most common types of cancer worldwide, with approximately 550,000 new cases each year. Early detection and appropriate diagnosis are important factors in successful treatment of the disease. MATERIAL AND METHODS: We used specific fluorogenic substrate for the quantitative determination of urine kallikrein 13 (KLK13) activity in healthy (n = 15) and BC (n = 54) patients. The proteolytic activity in individual urine samples was determined by fluorescence measurements. Then, immunoenzymatic analyses (ELISA, Western blot) were performed to confirm the presence of KLK13 in the tested samples. RESULTS: Urine samples from patients with G2 and G3 grade BC contained proteolytically active KLK13, as confirmed by kinetic analysis and immunochemical detection. KLK13 was not detected in the urine of patients with G1 grade BC. DISCUSSION: Previous clinical study reveals the KLK13 significance for BC prognosis as increased KLK13 expression was highlighted in bladder tumours compared to normal adjacent tissues. Our findings correlate to the report. KLK13 activity was confirmed in BC patients with G2 and G3 stage of disease development. CONCLUSIONS: Using specific chromogenic/fluorogenic peptides could be useful for the non-invasive disease monitoring of BC progress.


Assuntos
Biomarcadores Tumorais/urina , Calicreínas/urina , Neoplasias da Bexiga Urinária/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Calicreínas/metabolismo , Cinética , Masculino , Pessoa de Meia-Idade , Proteólise , Especificidade por Substrato , Neoplasias da Bexiga Urinária/diagnóstico , Adulto Jovem
14.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478014

RESUMO

Klotho was initially introduced as an antiaging molecule. Klotho deficiency significantly reduces lifespan, and its overexpression extends it and protects against various pathological phenotypes, especially renal disease. It was shown to regulate phosphate and calcium metabolism, protect against oxidative stress, downregulate apoptosis, and have antiinflammatory and antifibrotic properties. The course of diabetes mellitus and diabetic nephropathy resembles premature cellular senescence and causes the activation of various proinflammatory and profibrotic processes. Klotho was shown to exert many beneficial effects in these disorders. The expression of Klotho protein is downregulated in early stages of inflammation and diabetic nephropathy by proinflammatory factors. Therefore, its therapeutic effects are diminished in this disorder. Significantly lower urine levels of Klotho may serve as an early biomarker of renal involvement in diabetes mellitus. Recombinant Klotho administration and Klotho overexpression may have immunotherapeutic potential for the treatment of both diabetes and diabetic nephropathy. Therefore, the current manuscript aims to characterize immunopathologies occurring in diabetes and diabetic nephropathy, and tries to match them with antiinflammatory actions of Klotho. It also gives reasons for Klotho to be used in diagnostics and immunotherapy of these disorders.


Assuntos
Nefropatias Diabéticas/terapia , Glucuronidase/fisiologia , Inflamação/prevenção & controle , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Senescência Celular/genética , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/genética , Glucuronidase/farmacologia , Glucuronidase/uso terapêutico , Humanos , Inflamação/diagnóstico , Inflamação/etiologia , Inflamação/terapia , Proteínas Klotho , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico
15.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806461

RESUMO

The present study aimed to synthesize novel polycationic polymers composed of N-substituted L-2,3-diaminopropionic acid residues (DAPEGs) and investigate their cell permeability, cytotoxicity, and DNA-binding ability. The most efficient cell membrane-penetrating compounds (O2Oc-Dap(GO2)n-O2Oc-NH2, where n = 4, 6, and 8) showed dsDNA binding with a binding constant in the micromolar range (0.3, 3.4, and 0.19 µM, respectively) and were not cytotoxic to HB2 and MDA-MB-231 cells. Selected compounds used in the transfection of a GFP plasmid showed high transfection efficacy and minimal cytotoxicity. Their interaction with plasmid DNA and the increasing length of the main chain of tested compounds strongly influenced the organization and shape of the flower-like nanostructures formed, which were unique for 5/6-FAM-O2Oc-[Dap(GO2)]8-O2Oc-NH2 and typical for large proteins.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Ácidos Nucleicos/metabolismo , Polímeros/farmacologia , beta-Alanina/análogos & derivados , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Nanoestruturas/química , Plasmídeos/metabolismo , Transfecção/métodos , beta-Alanina/farmacologia
16.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360633

RESUMO

Hyperglycemic conditions (HG), at early stages of diabetic nephropathy (DN), cause a decrease in podocyte numbers and an aberration of their function as key cells for glomerular plasma filtration. Klotho protein was shown to overcome some negative effects of hyperglycemia. Klotho is also a coreceptor for fibroblast growth factor receptors (FGFRs), the signaling of which, together with a proper rate of glycolysis in podocytes, is needed for a proper function of the glomerular filtration barrier. Therefore, we measured levels of Klotho in renal tissue, serum, and urine shortly after DN induction. We investigated whether it influences levels of FGFRs, rates of glycolysis in podocytes, and albumin permeability. During hyperglycemia, the level of membrane-bound Klotho in renal tissue decreased, with an increase in the shedding of soluble Klotho, its higher presence in serum, and lower urinary excretion. The addition of Klotho increased FGFR levels, especially FGFR1/FGFR2, after their HG-induced decrease. Klotho also increased levels of glycolytic parameters of podocytes, and decreased podocytic and glomerular albumin permeability in HG. Thus, we found that the decrease in the urinary excretion of Klotho might be an early biomarker of DN and that Klotho administration may have several beneficial effects on renal function in DN.


Assuntos
Glucuronidase/metabolismo , Hiperglicemia/metabolismo , Podócitos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Glicólise , Proteínas Klotho , Masculino , Permeabilidade , Ratos Wistar
17.
Arch Biochem Biophys ; 692: 108541, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32781053

RESUMO

Podocytes are unique, highly specialized, terminally differentiated cells that form an essential, integral part of the glomerular filter. These cells limit the outside border of the glomerular basement membrane, forming a tight barrier that prevents significant protein loss from the capillary space. The slit diaphragm formed by podocytes is crucial for maintaining glomerular integrity and function. They are the target of injury in many glomerular diseases, including hypertension and diabetes mellitus. Accumulating studies have revealed that AMP-activated protein kinase (AMPK), an essential cellular energy sensor, might play a fundamental role in regulating podocyte metabolism and function. AMPK participates in insulin signaling, therefore controls glucose uptake and podocytes insulin sensitivity. It is also involved in insulin-dependent cytoskeleton reorganization in podocytes, mediating glomerular albumin permeability. AMPK plays an important role in the regulation of autophagy/apoptosis processes, which influence podocytes viability. The present review aimed to highlight the molecular mechanisms associated with AMPK that are involved in the regulation of podocyte function in health and disease states.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Nefropatias Diabéticas/enzimologia , Resistência à Insulina , Podócitos/enzimologia , Transdução de Sinais , Animais , Apoptose , Autofagia , Nefropatias Diabéticas/patologia , Humanos , Insulina/metabolismo , Glomérulos Renais/enzimologia , Glomérulos Renais/patologia , Podócitos/patologia
18.
Arch Biochem Biophys ; 695: 108649, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33122160

RESUMO

Podocytes and their foot processes interlinked by slit diaphragms, constitute a continuous outermost layer of the glomerular capillary and seem to be crucial for maintaining the integrity of the glomerular filtration barrier. Purinergic signaling is involved in a wide range of physiological processes in the renal system, including regulating glomerular filtration. We evaluated the role of nucleotide receptors in cultured rat podocytes using non-selective P2 receptor agonists and agonists specific for the P2Y1, P2Y2, and P2Y4 receptors. The results showed that extracellular ATP evokes cAMP-dependent pathways through P2 receptors and influences remodeling of the podocyte cytoskeleton and podocyte permeability to albumin via coupling with RhoA signaling. Our findings highlight the relevance of the P2Y4 receptor in protein kinase A-mediated signal transduction to the actin cytoskeleton. We observed increased cAMP concentration and decreased RhoA activity after treatment with a P2Y4 agonist. Moreover, protein kinase A inhibitors reversed P2Y4-induced changes in RhoA activity and intracellular F-actin staining. P2Y4 stimulation resulted in enhanced AMPK phosphorylation and reduced reactive oxygen species generation. Our findings identify P2Y-PKA-RhoA signaling as the regulatory mechanism of the podocyte contractile apparatus and glomerular filtration. We describe a protection mechanism for the glomerular barrier linked to reduced oxidative stress and reestablished energy balance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/farmacocinética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Podócitos/metabolismo , Receptores Purinérgicos P2/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Animais , Feminino , Podócitos/citologia , Ratos , Ratos Wistar , Proteínas rho de Ligação ao GTP/metabolismo
19.
Biol Cell ; 111(5): 109-120, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30702162

RESUMO

Diabetic nephropathy is a major long-term complication of diabetes mellitus and one of the most common causes of end-stage renal disease. Thickening of the glomerular basement membrane, glomerular cell hypertrophy and podocyte loss are among the main pathological changes that occur during diabetic nephropathy, resulting in proteinuria. Injury to podocytes, which are a crucial component of the glomerular filtration barrier, seems to play a key role in the development of diabetic nephropathy. Recent studies have suggested that dysregulation of AMP-activated kinase protein, which is an essential cellular energy sensor, may play a fundamental role in this process. The purpose of this review is to highlight the molecular mechanisms associated with AMP-activated protein kinase (AMPK) in podocytes that are involved in the pathogenesis of diabetic nephropathy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/patologia , Podócitos/enzimologia , Animais , Membrana Basal Glomerular/enzimologia , Membrana Basal Glomerular/patologia , Humanos , Hipertrofia , Podócitos/patologia , Transdução de Sinais
20.
Cell Biol Int ; 43(10): 1092-1101, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30968998

RESUMO

Vasodilator-stimulated phosphoprotein (VASP) is a 39-kDa protein belonging to the Ena/VASP protein family, which is involved in adhesion, migration, cell-cell interaction, and regulation of pathways connected with actin cytoskeleton remodeling. VASP is phosphorylated at Tyr39, Ser157, Ser239, Thr278, and Ser322 mainly by tyrosine kinase Abl, cAMP-dependent protein kinase, protein kinase G, AMP-activated protein kinase, and protein kinase D1, respectively. VASP phosphorylation, as a regulator of actin dynamics, may lead to impaired reorganization of the podocyte actin cytoskeleton not only by indirect interaction of VASP with actin but also by regulation of other signaling pathways. A few studies have shown that VASP participates in the development of renal diseases and mediates podocyte movement through its interaction with proteins of the slit diaphragm. VASP phosphorylation may cause reduced actin filament assembly in podocytes and mediate disturbances in regulation of filtration barrier permeability as a consequence of podocyte foot process effacement. In this paper, we describe the role of VASP in podocyte function, mainly in the context of actin dynamics and glomerular filtration barrier permeability. In addition, we discuss the involvement of VASP and its phosphorylated forms in the development of kidney diseases.


Assuntos
Citoesqueleto de Actina/metabolismo , Moléculas de Adesão Celular/fisiologia , Nefropatias/metabolismo , Proteínas dos Microfilamentos/fisiologia , Fosfoproteínas/fisiologia , Podócitos/metabolismo , Actinas/metabolismo , Animais , Humanos , Camundongos , Fosforilação , Podócitos/citologia , Podócitos/patologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA