Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(9): 5390-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25885948

RESUMO

We investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (µ-XRF) and X-ray absorption spectroscopy (µ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed. Further evidence was found for the sequestration of Tl(III) into Mn-oxides and the uptake of Tl(I) by illite. Quantification of the fractions of Tl(III), Tl(I)-jarosite and Tl(I)-illite in bulk samples based on XAS indicated that Tl(I) uptake by illite was the dominant retention mechanism in topsoil materials. Oxidative Tl(III)uptake into Mn-oxides was less relevant, probably because the Tl loadings of the soil exceeded the capacity of this uptake mechanism. The concentrations of Tl in 10 mM CaCl2-extracts increased with increasing soil Tl contents and decreasing soil pH, but did not exhibit drastic variations as a function of Tl speciation. With respect to Tl in contaminated soils, this study provides first direct spectroscopic evidence for Tl(I) uptake by illite and indicates the need for further studies on the sorption of Tl to clay minerals and Mn-oxides and its impact on Tl solubility in soils.


Assuntos
Arsênio/análise , Carbonatos/análise , Sedimentos Geológicos/química , Minerais/química , Poluentes do Solo/análise , Solo/química , Tálio/análise , Ácidos/química , Poluição Ambiental/análise , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Oxalatos/química , Espectrometria por Raios X , Sulfatos/química , Suíça , Espectroscopia por Absorção de Raios X
2.
Environ Sci Technol ; 46(13): 7310-7, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22676325

RESUMO

The kinetics and efficiencies of arsenite and arsenate removal from water were evaluated using polyaluminum granulates (PAG) with high content of aluminum nanoclusters. PAG was characterized to be meso- and macroporous, with a specific surface area of 35 ± 1 m(2) g(-1). Adsorption experiments were conducted at pH 7.5 in deionized water and synthetic water with composition of As-contaminated groundwater in the Pannonian Basin. As(III) and As(V) sorption was best described by the Freundlich and Langmuir isotherm, respectively, with a maximum As(V) uptake capacity of ~200 µmol g(-1) in synthetic water. While As(III) removal reached equilibrium within 40 h, As(V) was removed almost entirely within 20 h. Micro X-ray fluorescence and electron microscopy revealed that As(III) was distributed uniformly within the grain, whereas As(V) diffused up to 81 µm into PAG. The results imply that As(V) is adsorbed 3 times faster while being transported 10(5) times slower than As(III) in Al hydroxide materials.


Assuntos
Compostos de Alumínio/química , Arseniatos/isolamento & purificação , Arsenitos/isolamento & purificação , Nanoestruturas/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Cálcio/química , Água Subterrânea/análise , Nanoestruturas/ultraestrutura , Porosidade , Água/análise
3.
Sci Total Environ ; 807(Pt 1): 150720, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610405

RESUMO

Global warming in mid-latitude alpine regions results in permafrost thawing, together with greater availability of carbon and nutrients in soils and frequent freeze-thaw cycles. Yet it is unclear how these multifactorial changes will shape the 1 m-deep permafrost microbiome in the future, and how this will in turn modulate microbially-mediated feedbacks between mountain soils and climate (e.g. soil CO2 emissions). To unravel the responses of the alpine permafrost microbiome to in situ warming, we established a three-year experiment in a permafrost monitoring summit in the Alps. Specifically, we simulated conditions of warming by transplanting permafrost soils from a depth of 160 cm either to the active-layer topsoils in the north-facing slope or in the warmer south-facing slope, near the summit. qPCR-based and amplicon sequencing analyses indicated an augmented microbial abundance in the transplanted permafrost, driven by the increase in copiotrophic prokaryotic taxa (e.g. Noviherbaspirillum and Massilia) and metabolically versatile psychrotrophs (e.g. Tundrisphaera and Granulicella); which acclimatized to the changing environment and potentially benefited from substrates released upon thawing. Metabolically restricted Patescibacteria lineages vastly decreased with warming, as reflected in the loss of α-diversity in the transplanted soils. Ascomycetous sapro-pathotrophs (e.g. Tetracladium) and a few lichenized fungi (e.g. Aspicilia) expanded in the transplanted permafrost, particularly in soils transplanted to the warmer south-facing slope, replacing basidiomycetous yeasts (e.g. Glaciozyma). The transplantation-induced loosening of microbial association networks in the permafrost could potentially indicate lesser cooperative interactions between neighboring microorganisms. Broader substrate-use microbial activities measured in the transplanted permafrost could relate to altered soil C dynamics. The three-year simulated warming did not, however, enhance heterotrophic respiration, which was limited by the carbon-depleted permafrost conditions. Collectively, our quantitative findings suggest the vulnerability of the alpine permafrost microbiome to warming, which might improve predictions on microbially-modulated transformations of mountain soil ecosystems under the future climate.


Assuntos
Microbiota , Pergelissolo , Carbono , Solo , Microbiologia do Solo , Tundra
4.
Appl Environ Microbiol ; 76(14): 4788-96, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20525872

RESUMO

Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH(4)Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas.


Assuntos
Bactérias/metabolismo , Camada de Gelo/microbiologia , Dióxido de Silício/metabolismo , Microbiologia do Solo , Amônia/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Aderência Bacteriana , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glucose/metabolismo , Cianeto de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Metais/análise , Dados de Sequência Molecular , Ácido Oxálico/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suíça
5.
Water Res ; 126: 60-69, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918079

RESUMO

Clogging of streambeds by suspended particles (SP) can cause environmental problems, as it can negatively influence, e.g., habitats for macrozoobenthos, fish reproduction and groundwater recharge. This especially applies in the case of silt-sized SP. Until now, most research has dealt with coarse SP and was carried out in laboratory systems. The aims of this study are to examine (1) whether physical clogging by silt-sized SP exhibits the same dynamics and patterns as by sand-sized SP, and (2) the comparability of results between laboratory and field experiments. We carried out vertical column experiments with sand-sized bed material and silt-sized SP, which are rich in mica minerals. In laboratory experiments, we investigated the degree of clogging quantified by the reduction of porosity and hydraulic conductivity and the maximum clogging depth as a function of size and shape of bed material, size of SP, pore water flow velocity, and concentration of calcium cations. The SP were collected from an Alpine sedimentation basin, where our field experiments were carried out. To investigate the clogging process in the field, we buried columns filled with sand-sized quartz in the stream bed. We found that the maximal bed-to-grain ratio where clogging still occurs is larger for silt-sized SP than for sand-sized SP. The observed clogging depths and the reduction of flow rate through the column from our laboratory experiments were comparable to those from the field. However, our field results showed that the extent of clogging strongly depends on the naturally-occurring hydrological dynamics. The field location was characterized by a more polydisperse suspension, a strongly fluctuating water regime, and high SP concentrations at times, leading to more heterogeneous and more pronounced clogging when compared to laboratory results.


Assuntos
Hidrologia/métodos , Rios , Altitude , Cálcio/química , Ecossistema , Água Subterrânea , Tamanho da Partícula , Porosidade , Quartzo , Dióxido de Silício , Suíça , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA