Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nano Lett ; 22(7): 2971-2977, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35294200

RESUMO

Conversion of free-standing graphene into pure graphane─where each C atom is sp3 bound to a hydrogen atom─has not been achieved so far, in spite of numerous experimental attempts. Here, we obtain an unprecedented level of hydrogenation (≈90% of sp3 bonds) by exposing fully free-standing nanoporous samples─constituted by a single to a few veils of smoothly rippled graphene─to atomic hydrogen in ultrahigh vacuum. Such a controlled hydrogenation of high-quality and high-specific-area samples converts the original conductive graphene into a wide gap semiconductor, with the valence band maximum (VBM) ∼ 3.5 eV below the Fermi level, as monitored by photoemission spectromicroscopy and confirmed by theoretical predictions. In fact, the calculated band structure unequivocally identifies the achievement of a stable, double-sided fully hydrogenated configuration, with gap opening and no trace of π states, in excellent agreement with the experimental results.

2.
J Pept Sci ; 28(1): e3356, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34114297

RESUMO

Synthetic therapeutic peptides (STP) are intensively studied as new-generation drugs, characterized by high purity, biocompatibility, selectivity and stereochemical control. However, most of the studies are focussed on the bioactivity of STP without considering how the formulation actually used for therapy administration could alter the physico-chemical properties of the active principle. The aggregation properties of a 20-mer STP (Ac-His-Ala-Arg-Ile-Lys-D-Pro-Thr-Phe-Arg-Arg-D-Leu-Lys-Trp-Lys-Tyr-Lys-Gly-Lys-Phe-Trp-NH2 ), showing antitumor activity, were investigated by optical spectroscopy and atomic force microscopy imaging, as itself (CIGB552) and in its therapeutic formulation (CIGB552TF). It has found that the therapeutic formulation deeply affects the aggregation properties of the investigated peptide and the morphology of the aggregates formed on mica by deposition of CIGB552 and CIGB552TF millimolar solutions. Molecular dynamics simulations studied the first steps of CIGB552 aggregation under physiological ionic strength conditions (NaCl 150 mM), showing that peptide oligomers, from dimers to tetramers, are preferentially formed in this environment. Interestingly, cell viability assays performed on H-460 cell lines indicate a major antiproliferative activity of the peptide in its therapeutic formulation with respect to the peptide aqueous solution.


Assuntos
Simulação de Dinâmica Molecular , Fragmentos de Peptídeos , Sequência de Aminoácidos , Peptídeos , Análise Espectral
3.
Nanotechnology ; 32(3): 035707, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33017812

RESUMO

Graphane is formed by bonding hydrogen (and deuterium) atoms to carbon atoms in the graphene mesh, with modification from the pure planar sp2 bonding towards an sp3 configuration. Atomic hydrogen (H) and deuterium (D) bonding with C atoms in fully free-standing nano porous graphene (NPG) is achieved, by exploiting low-energy proton (or deuteron) non-destructive irradiation, with unprecedented minimal introduction of defects, as determined by Raman spectroscopy and by the C 1s core level lineshape analysis. Evidence of the H- (or D-) NPG bond formation is obtained by bringing to light the emergence of a H- (or D-) related sp3-distorted component in the C 1s core level, clear fingerprint of H-C (or D-C) covalent bonding. The H (or D) bonding with the C atoms of free-standing graphene reaches more than 1/4 (or 1/3) at% coverage. This non-destructive H-NPG (or D-NPG) chemisorption is very stable at high temperatures up to about 800 K, as monitored by Raman and x-ray photoelectron spectroscopy, with complete healing and restoring of clean graphene above 920 K. The excellent chemical and temperature stability of H- (and D-) NPG opens the way not only towards the formation of semiconducting graphane on large-scale samples, but also to stable graphene functionalisation enabling futuristic applications in advanced detectors for the ß-spectrum analysis.

4.
Nano Lett ; 18(5): 2918-2923, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29608313

RESUMO

The use of synthetic DNA to design and build molecular machines and well-defined structures at the nanoscale has greatly impacted the field of nanotechnology. Here we expand the current toolkit in this field by demonstrating an efficient, quantitative, and versatile approach that allows us to remotely control DNA-based reactions and DNA nanostructure self-assembly using electronic inputs. To do so we have deposited onto the surface of disposable chips different DNA input strands that upon the application of a cathodic potential can be desorbed in a remote and controlled way and trigger DNA-based reactions and DNA nanostructure self-assembly. We demonstrate that this effect is specific and versatile and allows the orthogonal control of multiple reactions and multiple structures in the same solution. Moreover, the strategy is highly tunable and can be finely modulated by varying the cathodic potential, the period of applied potential, and the density of the DNA strand on the chip surface. Our approach thus represents a versatile way to remotely control DNA-based circuits and nanostructure assembly and can allow new possible applications of DNA-based nanotools.


Assuntos
DNA/química , Eletrônica/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Eletrodos , Desenho de Equipamento , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , Robótica/instrumentação
5.
Sensors (Basel) ; 18(5)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747464

RESUMO

A novel type of graphene-like nanoparticle, synthesized by oxidation and unfolding of C60 buckminsterfullerene fullerene, showed multiple and reproducible sensitivity to Cu2+, Pb2+, Cd2+, and As(III) through different degrees of fluorescence quenching or, in the case of Cd2+, through a remarkable fluorescence enhancement. Most importantly, only for Cu2+ and Pb2+, the fluorescence intensity variations came with distinct modifications of the optical absorption spectrum. Time-resolved fluorescence study confirmed that the common origin of these diverse behaviors lies in complexation of the metal ions by fullerene-derived carbon layers, even though further studies are required for a complete explanation of the involved processes. Nonetheless, the different response of fluorescence and optical absorbance towards distinct cationic species makes it possible to discriminate between the presence of Cu2+, Pb2+, Cd2+, and As(III), through two simple optical measurements. To this end, the use of a three-dimensional calibration plot is discussed. This property makes fullerene-derived nanoparticles a promising material in view of the implementation of a selective, colorimetric/fluorescent detection system.

6.
Langmuir ; 32(44): 11560-11572, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27689538

RESUMO

Supported lipid membranes represent an elegant way to design a fluid interface able to mimic the physicochemical properties of biological membranes, with potential biotechnological applications. In this work, a diacyl phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE), functionalized with a thiol group, was immobilized on a gold surface. In this molecule, the thiol group, responsible for the Au-S bond (45 kJ/mol) is located on the phospholipid polar head, letting the hydrophobic chain protrude from the film. This system is widely used in the literature but is no less challenging, since its characterization is not complete, as several discordant data have been obtained. In this work, the film was characterized by cyclic voltammetry blocking experiments, to verify the SAM formation, and by reductive desorption measurements, to estimate the molecular density of DPPTE on the gold surface. This value has been compared to that obtained by quartz crystal microbalance measurements. Ellipsometry and impedance spectroscopy measurements have been performed to obtain information about the monolayer thickness and capacitance. The film morphology was investigated by atomic force microscopy. Finally, Monte Carlo simulations were carried out, in order to gain molecular information about the morphologies of the DPPTE SAM and compare them to the experimental results. We demonstrate that DPPTE molecules, incubated 18 h below the phase transition temperature (T = 41.1 ± 0.4 °C) in ethanol solution, are able to form a self-assembled monolayer on the gold surface, with domain structures of different order, which have never been reported before. Our results make possible rationalization of the scattered results so far obtained on this system, giving a new insight into the formation of phospholipids SAMs on a gold surface.

7.
Langmuir ; 31(27): 7572-80, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26102092

RESUMO

Several diseases are related to the lack or to the defective activity of a particular enzyme; therefore, these proteins potentially represent a very interesting class of therapeutics. However, their application is hampered by their rapid degradation and immunogenic side effects. Most attempts to increase the bioavailability of therapeutic enzymes are based on formulations in which the protein is entrapped within a scaffold structure but needs to be released to exert its activity. In this work, an alternative method will be described, designed to keep the enzyme in its active form inside a nanoparticle (NP) without the need to release it, thus maintaining the protective action of the nanoscaffold during the entire period of administration. In this approach, liposomes were used as nanotemplates for the synthesis of polyacrylamide hydrogel NPs under nondenaturing conditions, optimizing the polymer properties to obtain a mesh size small enough to limit the enzyme release while allowing the free diffusion of its substrates and products. The enzyme Cu, Zn-superoxide dismutase was chosen as a test case for this study, but our results indicate that the approach is generalizable to other enzymes. Biocompatible, size-tunable nanoparticles have been obtained, with a good encapsulation efficiency (37%), in which the enzyme maintains its activity. This system represents a promising tool for enzyme-based therapy, which would protect the protein from antibodies and degradation while allowing it to exert its catalytic activity.


Assuntos
Resinas Acrílicas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Superóxido Dismutase/metabolismo , Resinas Acrílicas/síntese química , Resinas Acrílicas/metabolismo , Biocatálise , Ativação Enzimática , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Lipossomos , Tamanho da Partícula , Propriedades de Superfície
8.
Biomacromolecules ; 15(9): 3412-20, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25105839

RESUMO

Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexa-histidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac's), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the ß-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.


Assuntos
Ouro/química , Histidina/química , Nanopartículas Metálicas/química , Níquel/química , Peptídeos/química
9.
Soft Matter ; 10(15): 2508-19, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24647758

RESUMO

The aggregation properties of two Ala-based pentapeptides were investigated by spectroscopic techniques and molecular dynamics (MD) simulations. The two peptides, both functionalized at the N-terminus with a pyrenyl group, differ in the insertion of an α-aminoisobutyric acid residue at position 4. We showed that this single modification of the homo-peptide sequence inhibits the aggregation of the pentapeptide in aqueous solutions. Atomic force microscopy imaging revealed that the two peptides form mesoscopic aggregates of very different morphologies when deposited on mica. MD experiments showed that the two peptides have a very different propensity to form ß-pleated sheet structures, as confirmed by our spectroscopic measurements. The implications of these findings for our understanding of the mechanism leading to the formation of amyloid structures, primary responsible for numerous neurodegenerative diseases, are also discussed.


Assuntos
Alanina/química , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação de Hidrogênio , Metanol/química , Microscopia de Força Atômica , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Água/química
10.
J Pept Sci ; 20(7): 494-507, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24845474

RESUMO

Interactions between peptides are relevant from a biomedical point of view, in particular for the role played by their aggregates in different important pathologies, and also because peptide aggregates represent promising scaffolds for innovative materials. In the present article, the aggregation properties of the homo-peptides formed by α-aminoisobutyric acid (U) residues are discussed. The peptides investigated have chain lengths between six and 15 residues and comprise benzyl and naphthyl groups at the N- and C-termini, respectively. Spectroscopic experiments and molecular dynamics simulations show that the shortest homo-peptide, constituted by six U, does not exhibit any tendency to aggregate under the conditions examined. On the other hand, the homologous peptide with 15 U forms very stable and compact aggregates in 70/30(v/v) methanol/water solution. Atomic force microscopy images indicate that these aggregates promote formation of long fibrils once they are deposited on a mica surface. The aggregation phenomenon is mainly due to hydrophobic interactions occurring between very stable helical structures, and the aromatic groups in the peptides seem to play a minor role.


Assuntos
Ácidos Aminoisobutíricos/química , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Microscopia de Força Atômica , Agregados Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
11.
ACS Appl Mater Interfaces ; 16(26): 33336-33346, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38907693

RESUMO

Developing earth-abundant transition metal electrodes with high activity and durability is crucial for efficient and cost-effective hydrogen production. However, numerous studies in the hydrogen evolution reaction (HER) primarily focus on improving the inherent activity of catalysts, and the critical influence of gas-liquid countercurrent transport behavior is often overlooked. In this study, we introduce the concept of separate-path gas-liquid transport to alleviate mass transport losses for the HER by developing a novel hierarchical porous Ni-doped cobalt phosphide electrode (CoNix-P@Ni). The CoNix-P@Ni electrodes with abundant microvalleys and crack structures facilitate the gas-liquid cotransport by separating the bubble release and water supply paths. Visualization and numerical simulation results demonstrate that cracks primarily serve as water supply paths, with capillary pressure facilitating the transport of water from the cracks to the microvalleys. This process ensures the continuous wetting of electrolytes in the electrode, reduces hydrogen supersaturation near the active site, and increases hydrogen transport flux to the microvalleys for accelerating bubble growth. Additionally, the microvalleys act as preferential sites for bubble evolution, preventing bubble coverage on other active sites. By regulating the amount of nickel, the CoNi1-P@Ni electrode exhibited the smallest and densest microvalleys and cracks, achieving superior HER performance with an overpotential of 51 mV at 10 mA cm-2. The results offer a promising direction for constructing high-performance HER electrodes.

12.
ChemSusChem ; : e202400841, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899482

RESUMO

In contrast to conventional non-biobased adsorbents, lignin emerges as a cost-effective and environmentally benign alternative for water treatment. This study identifies unexpected and unpredicted multifunctional properties of lignin nanoparticles (LNPs). LNPs, which are prepared by simple physical processes, demonstrated for the first time to behave as multifunctional materials able to adsorb and photodegrade methylene blue (MB) in aqueous medium upon UV irradiation. Furthermore, the synthetic approach adopted to synthesize LNPs - and therefore their surface properties - strongly affects their performances. More specifically, LNPs obtained by solvent-antisolvent nanoprecipitation (SLNPs) show the highest MB adsorption properties (98% removal), reaching a maximum adsorption capacity of 43 mg g-1, and the fastest adsorption kinetics with respect to other lignin-based adsorbents. Conversely, hydrotropic LNPs (HLNPs) exhibit exceptional photocatalytic activity, resulting in 98% MB degradation over 6 hours of UV irradiation, combined with the ability to be easily recycled and reused.  The present effort paves the way for the use of LNPs as efficient multifunctional materials able to perform concurrently adsorption and photocatalytic degradation of dye pollutants, toward the creation of a sustainable biobased water treatment platform.

13.
Nanomaterials (Basel) ; 13(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678086

RESUMO

Structures composed of alternating α and ß amino acids can give rise to peculiar secondary structural motifs, which could self-assemble into complex structures of controlled geometries. This work describes the self-assembly properties of an α,ß-peptide, containing three units of syn H2-(2-F-Phe)-h-PheGly-OH, able to self-organize on surfaces into a fascinating supramolecular rope. This material was characterized by AFM, electronic conduction and fluorescence measurements. Molecular dynamics simulations showed that this hexapeptide can self-assemble into an antiparallel ß-sheet layer, stabilized by intermolecular H-bonds, which, in turn, can self-assemble into many side-by-side layers, due to π-π interactions. As a matter of fact, we demonstrated that in this system, the presence of aromatic residues at the intramolecular interface promoted by the alternation of α,ß-amino-acids in the primary sequence, endorses the formation of a super-secondary structure where the aromatic groups are close to each other, conferring to the system good electron conduction properties. This work demonstrates the capability and future potential of designing and fabricating distinctive nanostructures and efficient bioelectronic interfaces based on an α,ß-peptide, by controlling structure and interaction processes beyond those obtained with α- or ß-peptides alone.

14.
ACS Omega ; 7(35): 31260-31270, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092562

RESUMO

The regulation of H2 evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H2 production. We have successfully generated Au-Cu nanoalloys using a laser ablation method and deposited them on TiO2 photocatalyst films (Au x Cu100-x /TiO2). The Au-Cu/TiO2 films were employed as photocatalysts for H2 production from formic acid dehydrogenation under light-emitting diode (LED) irradiation (365 nm). The highest H2 evolution rate for Au20Cu80/TiO2 is archived to 62,500 µmol h-1 g-1 per photocatalyst weight. The remarkable performance of Au20Cu80/TiO2 may account for the formation of Au-rich surfaces and the effect of Au alloying that enables Cu to sustain the metallic form on its surface. The metallic Au-Cu surface on TiO2 is vital to supply the photoexcited electrons of TiO2 to its surface for H2 evolution. The rate-determining step (RDS) is identified as the reaction of a surface-active species with protons. The results establish a practical preparation of metal alloy deposited on photocatalyst films using laser ablation to develop efficient photocatalysts.

15.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335820

RESUMO

In this study, we present a full characterization of the electronic properties of phase change material (PCM) double-layered heterostructures deposited on silicon substrates. Thin films of amorphous Ge-rich Ge-Sb-Te (GGST) alloys were grown by physical vapor deposition on Sb2Te3 and on Ge2Sb2Te5 layers. The two heterostructures were characterized in situ by X-ray and ultraviolet photoemission spectroscopies (XPS and UPS) during the formation of the interface between the first and the second layer (top GGST film). The evolution of the composition across the heterostructure interface and information on interdiffusion were obtained. We found that, for both cases, the final composition of the GGST layer was close to Ge2SbTe2 (GST212), which is a thermodynamically favorable off-stoichiometry GeSbTe alloy in the Sb-GeTe pseudobinary of the ternary phase diagram. Density functional theory calculations allowed us to calculate the density of states for the valence band of the amorphous phase of GST212, which was in good agreement with the experimental valence bands measured in situ by UPS. The same heterostructures were characterized by X-ray diffraction as a function of the annealing temperature. Differences in the crystallization process are discussed on the basis of the photoemission results.

16.
Nanomaterials (Basel) ; 12(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458046

RESUMO

In this study, we deposit a Ge-rich Ge-Sb-Te alloy by physical vapor deposition (PVD) in the amorphous phase on silicon substrates. We study in-situ, by X-ray and ultraviolet photoemission spectroscopies (XPS and UPS), the electronic properties and carefully ascertain the alloy composition to be GST 29 20 28. Subsequently, Raman spectroscopy is employed to corroborate the results from the photoemission study. X-ray diffraction is used upon annealing to study the crystallization of such an alloy and identify the effects of phase separation and segregation of crystalline Ge with the formation of grains along the [111] direction, as expected for such Ge-rich Ge-Sb-Te alloys. In addition, we report on the electrical characterization of single memory cells containing the Ge-rich Ge-Sb-Te alloy, including I-V characteristic curves, programming curves, and SET and RESET operation performance, as well as upon annealing temperature. A fair alignment of the electrical parameters with the current state-of-the-art of conventional (GeTe)n-(Sb2Te3)m alloys, deposited by PVD, is found, but with enhanced thermal stability, which allows for data retention up to 230 °C.

17.
ACS Appl Mater Interfaces ; 13(20): 24207-24217, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988378

RESUMO

In this work, we shed new light on ultrasound contrast agents applied to the field of cultural heritage as an invaluable fine-tune cleaning tool for paper artworks. In this context, one of the primary and challenging issues is the removal of modern adhesives from paper artifacts. Modern adhesives are synthetic polymers whose presence enhances paper degradation and worsens its optical features. A thorough analytical and high-spatial-resolution combined study was successfully performed to test the capability of poly(vinyl alcohol)-based microbubbles stimulated by a proper noninvasive 1 MHz ultrasound field exposure in removing these adhesives from paper surfaces, in the absence of volatile invasive and toxic chemicals and without damaging paper and/or leaving residues. We demonstrate that poly(vinyl alcohol)-shelled microbubbles are suitable for interacting with paper surfaces, targeting and boosting in a few minutes the nondamaging removal of adhesive particles from paper samples thanks to their peculiar shell composition together with their ultrasound dynamics.

18.
Chempluschem ; 84(11): 1688-1696, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31943881

RESUMO

The influence of conformational dynamics on the self-assembly process of a conformationally constrained analogue of the natural antimicrobial peptide Trichogin GA IV was analysed by spectroscopic methods, microscopy imaging at nanometre resolution, and molecular dynamics simulations. The formation of peptide films at the air/water interface and their deposition on a graphite or a mica substrate were investigated. A combination of experimental evidence with molecular dynamics simulation was used to demonstrate that only the fully developed helical structure of the analogue promotes formation of ordered aggregates that nucleate the growth of micrometric rods, which give rise to homogenous coating over wide regions of the hydrophilic mica. This work proves the influence of helix flexibility on peptide self-organization and orientation on surfaces, key steps in the design of bioinspired organic/inorganic hybrid materials.


Assuntos
Silicatos de Alumínio/química , Grafite/química , Lipopeptídeos/química , Nanoestruturas/química , Sequência de Aminoácidos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Propriedades de Superfície , Água/química , Difração de Raios X
19.
Nanomaterials (Basel) ; 9(8)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382607

RESUMO

Neutron scattering in combination with scanning electron and atomic force microscopy were employed to quantitatively resolve elemental composition, nano- through meso- to metallurgical structures and surface characteristics of two commercial stainless steel orthodontic archwires-G&H and Azdent. The obtained bulk composition confirmed that both samples are made of metastable austenitic stainless steel type AISI 304. The neutron technique's higher detection sensitivity to alloying elements facilitated the quantitative determination of the composition factor (CF), and the pitting resistance equivalent number (PREN) for predicting austenite stability and pitting-corrosion resistance, respectively. Simultaneous neutron diffraction analyses revealed that both samples contained additional martensite phase due to strain-induced martensite transformation. The unexpectedly high martensite content (46.20 vol%) in G&H was caused by combination of lower austenite stability (CF = 17.37, p = .03), excessive cold working and inadequate thermal treatment during material processing. Together, those results assist in revealing alloying recipes and processing history, and relating these with corrosion resistance and mechanical properties. The present methodology has allowed access to unprecedented length-scale (µm to sub-nm) resolution, accessing nano- through meso-scopic properties. It is envisaged that such an approach can be extended to the study and design of other metallic (bio)materials used in medical sciences, dentistry and beyond.

20.
Materials (Basel) ; 12(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965616

RESUMO

Tissue engineering is a highly interdisciplinary field of medicine aiming at regenerating damaged tissues by combining cells with porous scaffolds materials. Scaffolds are templates for tissue regeneration and should ensure suitable cell adhesion and mechanical stability throughout the application period. Chitosan (CS) is a biocompatible polymer highly investigated for scaffold preparation but suffers from poor mechanical strength. In this study, graphene oxide (GO) was conjugated to chitosan at two weight ratios 0.3% and 1%, and the resulting conjugates were used to prepare composite scaffolds with improved mechanical strength. To study the effect of GO oxidation degree on scaffold mechanical and biological properties, GO samples at two different oxygen contents were employed. The obtained GO/CS scaffolds were highly porous and showed good swelling in water, though to a lesser extent than pure CS scaffold. In contrast, GO increased scaffold thermal stability and mechanical strength with respect to pure CS, especially when the GO at low oxygen content was used. The scaffold in vitro cytocompatibility using human primary dermal fibroblasts was also affected by the type of used GO. Specifically, the GO with less content of oxygen provided the scaffold with the best biocompatibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA