Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 603(7899): 180-186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34929720

RESUMO

Depolarizing sodium (Na+) leak currents carried by the NALCN channel regulate the resting membrane potential of many neurons to modulate respiration, circadian rhythm, locomotion and pain sensitivity1-8. NALCN requires FAM155A, UNC79 and UNC80 to function, but the role of these auxiliary subunits is not understood3,7,9-12. NALCN, UNC79 and UNC80 are essential in rodents2,9,13, and mutations in human NALCN and UNC80 cause severe developmental and neurological disease14,15. Here we determined the structure of the NALCN channelosome, an approximately 1-MDa complex, as fundamental aspects about the composition, assembly and gating of this channelosome remain obscure. UNC79 and UNC80 are massive HEAT-repeat proteins that form an intertwined anti-parallel superhelical assembly, which docks intracellularly onto the NALCN-FAM155A pore-forming subcomplex. Calmodulin copurifies bound to the carboxy-terminal domain of NALCN, identifying this region as a putative modulatory hub. Single-channel analyses uncovered a low open probability for the wild-type complex, highlighting the tightly closed S6 gate in the structure, and providing a basis to interpret the altered gating properties of disease-causing variants. Key constraints between the UNC79-UNC80 subcomplex and the NALCN DI-DII and DII-DIII linkers were identified, leading to a model of channelosome gating. Our results provide a structural blueprint to understand the physiology of the NALCN channelosome and a template for drug discovery to modulate the resting membrane potential.


Assuntos
Canais Iônicos , Proteínas de Membrana , Motivos de Aminoácidos , Calmodulina , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Humanos , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Potenciais da Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Sódio/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(22): e2401591121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787877

RESUMO

The sodium (Na+) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (NaVs and CaVs, respectively). Unlike NaVs and CaVs, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145, and Y1436) that block these openings. Structural data suggest that occluded fenestrations underlie the pharmacological resistance of NALCN, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned residues with alanine (AAAA) and compared the effects of NaV, CaV, and NALCN blockers on both wild-type (WT) and AAAA channels. Most compounds behaved in a similar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cavity through distinct fenestrations, implying structural specificity to their modes of access. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug binding site(s) within the pore region. Intrigued by the activity of 2-APB and its analogues, we tested compounds containing the diphenylmethane/amine moiety on WT channels. We identified clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the pharmacological resistance of NALCN, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties.


Assuntos
Fenitoína , Sítios de Ligação , Humanos , Fenitoína/metabolismo , Fenitoína/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética , Células HEK293 , Animais , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/química , Proteínas de Membrana
3.
Nature ; 587(7833): 313-318, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32698188

RESUMO

Persistently depolarizing sodium (Na+) leak currents enhance electrical excitability1,2. The ion channel responsible for the major background Na+ conductance in neurons is the Na+ leak channel, non-selective (NALCN)3,4. NALCN-mediated currents regulate neuronal excitability linked to respiration, locomotion and circadian rhythm4-10. NALCN activity is under tight regulation11-14 and mutations in NALCN cause severe neurological disorders and early death15,16. NALCN is an orphan channel in humans, and fundamental aspects of channel assembly, gating, ion selectivity and pharmacology remain obscure. Here we investigate this essential leak channel and determined the structure of NALCN in complex with a distinct auxiliary subunit, family with sequence similarity 155 member A (FAM155A). FAM155A forms an extracellular dome that shields the ion-selectivity filter from neurotoxin attack. The pharmacology of NALCN is further delineated by a walled-off central cavity with occluded lateral pore fenestrations. Unusual voltage-sensor domains with asymmetric linkages to the pore suggest mechanisms by which NALCN activity is modulated. We found a tightly closed pore gate in NALCN where the majority of missense patient mutations cause gain-of-function phenotypes that cluster around the S6 gate and distinctive π-bulges. Our findings provide a framework to further study the physiology of NALCN and a foundation for discovery of treatments for NALCN channelopathies and other electrical disorders.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Mutação com Ganho de Função , Células HEK293 , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34373326

RESUMO

The voltage-gated sodium channel Nav1.5 initiates the cardiac action potential. Alterations of its activation and inactivation properties due to mutations can cause severe, life-threatening arrhythmias. Yet despite intensive research efforts, many functional aspects of this cardiac channel remain poorly understood. For instance, Nav1.5 undergoes extensive posttranslational modification in vivo, but the functional significance of these modifications is largely unexplored, especially under pathological conditions. This is because most conventional approaches are unable to insert metabolically stable posttranslational modification mimics, thus preventing a precise elucidation of the contribution by these modifications to channel function. Here, we overcome this limitation by using protein semisynthesis of Nav1.5 in live cells and carry out complementary molecular dynamics simulations. We introduce metabolically stable phosphorylation mimics on both wild-type (WT) and two pathogenic long-QT mutant channel backgrounds and decipher functional and pharmacological effects with unique precision. We elucidate the mechanism by which phosphorylation of Y1495 impairs steady-state inactivation in WT Nav1.5. Surprisingly, we find that while the Q1476R patient mutation does not affect inactivation on its own, it enhances the impairment of steady-state inactivation caused by phosphorylation of Y1495 through enhanced unbinding of the inactivation particle. We also show that both phosphorylation and patient mutations can impact Nav1.5 sensitivity toward the clinically used antiarrhythmic drugs quinidine and ranolazine, but not flecainide. The data highlight that functional effects of Nav1.5 phosphorylation can be dramatically amplified by patient mutations. Our work is thus likely to have implications for the interpretation of mutational phenotypes and the design of future drug regimens.


Assuntos
Regulação da Expressão Gênica/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Oócitos , Técnicas de Patch-Clamp , Fosforilação , Conformação Proteica , Bloqueadores dos Canais de Sódio/farmacologia , Xenopus laevis
5.
Biophys J ; 118(4): 861-872, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31630811

RESUMO

Despite the sequence homology between acid-sensing ion channels (ASICs) and epithelial sodium channel (ENaCs), these channel families display very different functional characteristics. Whereas ASICs are gated by protons and show a relatively low degree of selectivity for sodium over potassium, ENaCs are constitutively active and display a remarkably high degree of sodium selectivity. To decipher if some of the functional diversity originates from differences within the transmembrane helices (M1 and M2) of both channel families, we turned to a combination of computational and functional interrogations, using statistical coupling analysis and mutational studies on mouse ASIC1a. The coupling analysis suggests that the relative position of M1 and M2 in the upper part of the pore domain is likely to remain constant during the ASIC gating cycle, whereas they may undergo relative movements in the lower part. Interestingly, our data suggest that to account for coupled residue pairs being in close structural proximity, both domain-swapped and nondomain-swapped ASIC M2 conformations need to be considered. Such conformational flexibility is consistent with structural work, which suggested that the lower part of M2 can adopt both domain-swapped and nondomain-swapped conformations. Overall, mutations to residues in the middle and lower pore were more likely to affect gating and/or ion selectivity than those in the upper pore. Indeed, disrupting the putative interaction between a highly conserved Trp/Glu residue pair in the lower pore is detrimental to gating and selectivity, although this interaction might occur in both domain-swapped and nonswapped conformations. Finally, our results suggest that the greater number of larger, aromatic side chains in the ENaC M2 helix may contribute to the constitutive activity of these channels at a resting pH. Together, the data highlight differences in the transmembrane domains of these closely related ion channels that may help explain some of their distinct functional properties.


Assuntos
Canais Iônicos Sensíveis a Ácido , Canais Epiteliais de Sódio , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Camundongos , Conformação Molecular , Prótons , Sódio/metabolismo
6.
bioRxiv ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328210

RESUMO

The sodium (Na + ) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (Na V s and Ca V s, respectively). Unlike Na V s and Ca V s, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145 and Y1436) that block these openings. Structural data suggest that oc-cluded lateral fenestrations underlie the pharmacological resistance of NALCN to lipophilic compounds, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned resi-dues with alanine (AAAA) and compared the effects of Na V , Ca V and NALCN block-ers on both wild-type (WT) and AAAA channels. Most compounds behaved in a simi-lar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cav-ity through distinct fenestrations, implying structural specificity to their modes of ac-cess. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug bind-ing site(s) within the pore region. Intrigued by the activity of 2-APB and its ana-logues, we tested additional compounds containing the diphenylmethane/amine moiety on WT channels. We identified compounds from existing clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the resistance of NALCN to pharmacological targeting, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties. Significance statement: The sodium leak channel (NALCN) is essential for survival: mutations cause life-threatening developmental disorders in humans. However, no treatment is currently available due to the resistance of NALCN to pharmacological targeting. One likely reason is that the lateral fenestrations, a common route for clinically used drugs to enter and block related ion channels, are occluded in NALCN. Using a combination of computational and functional approaches, we unplugged the fenestrations of NALCN which led us to the first molecularly defined drug binding site within the pore region. Besides that, we also identified additional NALCN modulators from existing clinically used therapeutics, thus expanding the pharmacological toolbox for this leak channel.

7.
Cell Chem Biol ; 31(5): 1000-1010.e6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38113885

RESUMO

Acid-sensing ion channels (ASICs) are trimeric ion channels that open a cation-conducting pore in response to proton binding. Excessive ASIC activation during prolonged acidosis in conditions such as inflammation and ischemia is linked to pain and stroke. A conserved lysine in the extracellular domain (Lys211 in mASIC1a) is suggested to play a key role in ASIC function. However, the precise contributions are difficult to dissect with conventional mutagenesis, as replacement of Lys211 with naturally occurring amino acids invariably changes multiple physico-chemical parameters. Here, we study the contribution of Lys211 to mASIC1a function using tandem protein trans-splicing (tPTS) to incorporate non-canonical lysine analogs. We conduct optimization efforts to improve splicing and functionally interrogate semisynthetic mASIC1a. In combination with molecular modeling, we show that Lys211 charge and side-chain length are crucial to activation and desensitization, thus emphasizing that tPTS can enable atomic-scale interrogations of membrane proteins in live cells.


Assuntos
Canais Iônicos Sensíveis a Ácido , Lisina , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Lisina/química , Lisina/metabolismo , Humanos , Animais , Modelos Moleculares , Processamento de Proteína
8.
Br J Pharmacol ; 179(14): 3859-3874, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35285517

RESUMO

BACKGROUND AND PURPOSE: P2X receptors are trimeric ligand-gated ion channels that open a cation-selective pore in response to ATP binding to their large extracellular domain. The seven known P2X subtypes can assemble as homotrimeric or heterotrimeric complexes and contribute to numerous physiological functions, including nociception, inflammation and hearing. The overall structure of P2X receptors is well established, but little is known about the range and prevalence of human genetic variations and the functional implications of specific domains. EXPERIMENTAL APPROACH: Here, we examine the impact of P2X2 receptor inter-subunit interface missense variants identified in the human population or by structural predictions. We test both single and double mutants through electrophysiological and biochemical approaches. KEY RESULTS: We demonstrate that predicted extracellular domain inter-subunit interfaces display a higher-than-expected density of missense variations and that the majority of mutations that disrupt putative inter-subunit interactions result in channels with higher apparent ATP affinity. Lastly, we show that double mutants at the subunit interface show significant energetic coupling, especially if located in close proximity. CONCLUSION AND IMPLICATIONS: We provide the first structural mapping of the mutational distribution across the human population in a ligand-gated ion channel and show that the density of missense mutations is constrained between protein domains, indicating evolutionary selection at the domain level. Our data may indicate that, unlike other ligand-gated ion channels, P2X2 receptors have evolved an intrinsically high threshold for activation, possibly to allow for additional modulation or as a cellular protection mechanism against overstimulation.


Assuntos
Ativação do Canal Iônico , Mutação de Sentido Incorreto , Receptores Purinérgicos P2X2 , Trifosfato de Adenosina/metabolismo , Humanos , Mutação , Receptores Purinérgicos P2X2/genética
9.
Nat Commun ; 13(1): 1416, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301303

RESUMO

Unlike classical voltage-gated sodium (NaV) channels, NaX has been characterized as a voltage-insensitive, tetrodotoxin-resistant, sodium (Na+)-activated channel involved in regulating Na+ homeostasis. However, NaX remains refractory to functional characterization in traditional heterologous systems. Here, to gain insight into its atypical physiology, we determine structures of the human NaX channel in complex with the auxiliary ß3-subunit. NaX reveals structural alterations within the selectivity filter, voltage sensor-like domains, and pore module. We do not identify an extracellular Na+-sensor or any evidence for a Na+-based activation mechanism in NaX. Instead, the S6-gate remains closed, membrane lipids fill the central cavity, and the domain III-IV linker restricts S6-dilation. We use protein engineering to identify three pore-wetting mutations targeting the hydrophobic S6-gate that unlock a robust voltage-insensitive leak conductance. This constitutively active NaX-QTT channel construct is non-selective among monovalent cations, inhibited by extracellular calcium, and sensitive to classical NaV channel blockers, including tetrodotoxin. Our findings highlight a functional diversity across the NaV channel scaffold, reshape our understanding of NaX physiology, and provide a template to demystify recalcitrant ion channels.


Assuntos
Cálcio , Sódio , Cálcio/metabolismo , Cátions , Humanos , Sódio/metabolismo , Tetrodotoxina/farmacologia
10.
Methods Enzymol ; 654: 19-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34120713

RESUMO

Conventional site-directed mutagenesis and genetic code expansion approaches have been instrumental in providing detailed functional and pharmacological insight into membrane proteins such as ion channels. Recently, this has increasingly been complemented by semi-synthetic strategies, in which part of the protein is generated synthetically. This means a vast range of chemical modifications, including non-canonical amino acids (ncAA), backbone modifications, chemical handles, fluorescent or spectroscopic labels and any combination of these can be incorporated. Among these approaches, protein trans-splicing (PTS) is particularly promising for protein reconstitution in live cells. It relies on one or more split inteins, which can spontaneously and covalently link flanking peptide or protein sequences. Here, we describe the use of PTS and its variant tandem PTS (tPTS) in semi-synthesis of ion channels in Xenopus laevis oocytes to incorporate ncAAs, post-translational modifications or metabolically stable mimics thereof. This strategy has the potential to expand the type and number of modifications in ion channel research.


Assuntos
Processamento de Proteína , Trans-Splicing , Inteínas , Canais Iônicos/genética , Peptídeos , Engenharia de Proteínas
11.
J Med Chem ; 63(22): 13709-13718, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33143415

RESUMO

Venomous snakebites cause >100 000 deaths every year, in many cases via potent depression of human neuromuscular signaling by snake α-neurotoxins. Emergency therapy still relies on antibody-based antivenom, hampered by poor access, frequent adverse reactions, and cumbersome production/purification. Combining high-throughput discovery and subsequent structure-function characterization, we present simple peptides that bind α-cobratoxin (α-Cbtx) and prevent its inhibition of nicotinic acetylcholine receptors (nAChRs) as a lead for the development of alternative antivenoms. Candidate peptides were identified by phage display and deep sequencing, and hits were characterized by electrophysiological recordings, leading to an 8-mer peptide that prevented α-Cbtx inhibition of nAChRs. We also solved the peptide:α-Cbtx cocrystal structure, revealing that the peptide, although of unique primary sequence, binds to α-Cbtx by mimicking structural features of the nAChR binding pocket. This demonstrates the potential of small peptides to neutralize lethal snake toxins in vitro, establishing a potential route to simple, synthetic, low-cost antivenoms.


Assuntos
Proteínas Neurotóxicas de Elapídeos/antagonistas & inibidores , Proteínas Neurotóxicas de Elapídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Proteínas Neurotóxicas de Elapídeos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Feminino , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Receptores Nicotínicos/química , Xenopus laevis
12.
Cell Rep ; 22(6): 1615-1626, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29425514

RESUMO

Fluorescent labels offer the capability to follow conformational dynamics of membrane proteins, but signal detection in such recordings is inherently difficult to achieve in a cell membrane and lacks sufficient time resolution to follow physiologically relevant transitions. Here, we develop high-sensitivity patch-clamp fluorometry (hsPCF), a fluorescence-based approach that results in up to 10-fold increased signals and affords 50-fold faster fluorescence recordings than previous methods. The increased time resolution is paired with a very high versatility in terms of the choice of fluorescent dye, cell type, and protein of interest. We highlight this versatility by providing insight into the conformational dynamics of both ligand- and voltage-gated ion channels using fluorescent labels introduced in extracellular or transmembrane positions while changing either the extra- or intracellular solutions. Together, hsPCF will thus enable the future study of membrane-embedded proteins with sufficient temporal resolution to resolve conformational dynamics.


Assuntos
Fluorometria/métodos , Canais Iônicos/química , Técnicas de Patch-Clamp/métodos , Animais , Humanos , Ativação do Canal Iônico/fisiologia , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA