Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(34): 14517-14526, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32495522

RESUMO

Radical ring-opening polymerization (rROP) of cyclic ketene acetals (CKAs) combines the advantages of both ring-opening polymerization and radical polymerization thereby allowing the robust production of polyesters coupled with the mild polymerization conditions of a radical process. rROP was recently rejuvenated by the possibility to copolymerize CKAs with classic vinyl monomers leading to the insertion of cleavable functionality into a vinyl-based copolymer backbone and thus imparting (bio)degradability. Such materials are suitable for a large scope of applications, particularly within the biomedical field. The competition between the ring-opening and ring-retaining propagation routes is a major complication in the development of efficient CKA monomers, ultimately leading to the use of only four monomers that are known to completely ring-open under all experimental conditions. In this article we investigate the radical ring-opening polymerization of model CKA monomers and demonstrate by the combination of DFT calculations and kinetic modeling using PREDICI software that we are now able to predict in silico the ring-opening ability of CKA monomers.

2.
Sci Justice ; 56(3): 223-230, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27162021

RESUMO

This work examines the chemical synthesis of 3,4-methylenedioxy-N-methylamphetamine (MDMA) from piperonal prepared via a catalytic ruthenium tetroxide oxidation of piperine extracted from black pepper. A variety of oxidation conditions were experimented with including different solvent systems and co-oxidants. A sample of prepared piperonal was successfully converted into MDMA via 3,4-methylenedioxyphenyl-2-nitropropene (MDP2NP) and 3,4-methylenedioxyphenyl-2-propanone (MDP2P) and the impurities within each product characterised by GC-MS to give a contaminant profile of the synthetic pathway. Interestingly, it was discovered that a chlorinated analogue of piperonal (6-chloropiperonal) was created during the oxidation process by an as yet unknown mechanism. This impurity reacted alongside piperonal to give chlorinated analogues of each precursor, ultimately yielding 2-chloro-4,5-methylenedioxymethamphetamine (6-Cl-MDMA) as an impurity within the MDMA sample. The methodology developed is a simple way to synthesise a substantial amount of precursor material with easy to obtain reagents. The results also show that chlorinated MDMA analogues, previously thought to be deliberately included adulterants, may in fact be route specific impurities with potential application in determining the origin and synthesis method of seized illicit drugs.


Assuntos
Alucinógenos/síntese química , Drogas Ilícitas/química , N-Metil-3,4-Metilenodioxianfetamina/síntese química , Piper nigrum/química , Benzaldeídos/química , Benzodioxóis/química , Contaminação de Medicamentos , Humanos , Oxirredução
3.
Molecules ; 20(12): 21787-801, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26690103

RESUMO

Through the incorporation of a thiophene functionality, a novel solution-processable small organic chromophore was designed, synthesized and characterized for application in bulk-heterojunction solar cells. The new chromophore, (2Z,2'Z)-2,2'-(1,4-phenylene)bis(3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylonitrile) (coded as AS2), was based on a donor-acceptor-donor (D-A-D) module where a simple triphenylamine unit served as an electron donor, 1,4-phenylenediacetonitrile as an electron acceptor, and a thiophene ring as the π-bridge embedded between the donor and acceptor functionalities. AS2 was isolated as brick-red, needle-shaped crystals, and was fully characterized by ¹H- and (13)C-NMR, IR, mass spectrometry and single crystal X-ray diffraction. The optoelectronic and photovoltaic properties of AS2 were compared with those of a structural analogue, (2Z,2'Z)-2,2'-(1,4-phenylene)bis(3-(4-(diphenylamino)phenyl)-acrylonitrile) (AS1). Benefiting from the covalent thiophene bridges, compared to AS1 thin solid film, the AS2 film showed: (1) an enhancement of light-harvesting ability by 20%; (2) an increase in wavelength of the longest wavelength absorption maximum (497 nm vs. 470 nm) and (3) a narrower optical band-gap (1.93 eV vs. 2.17 eV). Studies on the photovoltaic properties revealed that the best AS2-[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)-based device showed an impressive enhanced power conversion efficiency of 4.10%, an approx. 3-fold increase with respect to the efficiency of the best AS1-based device (1.23%). These results clearly indicated that embodiment of thiophene functionality extended the molecular conjugation, thus enhancing the light-harvesting ability and short-circuit current density, while further improving the bulk-heterojunction device performance. To our knowledge, AS2 is the first example in the literature where a thiophene unit has been used in conjunction with a 1,4-phenylenediacetonitrile accepting functionality to extend the π-conjugation in a given D-A-D motif for bulk-heterojunction solar cell applications.


Assuntos
Corantes/química , Tiofenos/química , Cristalografia por Raios X , Eletroquímica , Processos Fotoquímicos , Energia Solar , Soluções
4.
Macromolecules ; 56(3): 731-750, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36818576

RESUMO

A crucial modern dilemma relates to the ecological crisis created by excess plastic waste production. An emerging technology for reducing plastic waste is the production of "chemically recyclable" polymers. These polymers can be efficiently synthesized through ring-opening polymerization (ROP/ROMP) and later recycled to pristine monomer by ring-closing depolymerization, in an efficient circular-type system. This Perspective aims to explore the chemistry involved in the preparation of these monomer/polymer systems, while also providing an overview of the challenges involved, including future directions.

5.
Chem Sci ; 13(40): 11746-11754, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320906

RESUMO

The discovery of exhaustive (nearly quantitative) post-polymerization modifications (PPM) relies heavily on the efficiency of their corresponding small-molecule protocols. However, the direct translation of existing small-molecule protocols into PPM methods has never been guaranteed due to the intrinsic differences between small-molecule substrates and polymers. Herein, we introduce the direct optimization on polymers (DOP) as a complementary approach to developing exhaustive PPM reactions. As proof of the DOP concept, we present an exhaustive Baeyer-Villiger (BV) post-modification which cannot be accessed by conventional approaches. This user-friendly methodology provides general access to synthetically challenging copolymers of vinyl acetate and more activated monomers (MAMs) including both statistical and narrow-dispersed block copolymers. Furthermore, a scalable one-pot copolymerization/exhaustive BV post-modification procedure was developed to produce such materials showing improved performance over regular PVAc.

6.
Int J Biol Macromol ; 215: 346-367, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35718150

RESUMO

Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.


Assuntos
Quitosana , Nanopartículas , Materiais Biocompatíveis/uso terapêutico , Quitosana/uso terapêutico , Nanopartículas/uso terapêutico , Polímeros , Polissacarídeos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA