Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Physiol Plant ; 154(3): 395-406, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25410139

RESUMO

Lignins result from the oxidative polymerization of three hydroxycinnamyl (p-coumaryl, coniferyl and sinapyl) alcohols in a reaction mediated by peroxidases (EC 1.11.1.7) and laccases (EC 1.10.3.2), yielding H, G and S units, respectively. Although both acidic and basic peroxidases can oxidize p-coumaryl and coniferyl alcohol, only basic peroxidases are able to oxidize sinapyl alcohol. The AtPrx52 from Arabidopsis is a basic peroxidase that has been reported to be highly homologous to the basic peroxidase of Zinnia elegans, the only peroxidase which has been unequivocally linked to lignin formation. Here, we show how the suppression of AtPrx52 causes a change in lignin composition, mainly at the level of stem interfascicular fibers. Quantification of lignins in two different atprx52 knock-out mutants revealed a decrease of lignin amount compared with wild type. The S/G ratio, obtained by both nitrobenzene oxidation and thioacidolysis, indicated a decrease in S units in the atprx52 mutants. As deduced from Wiesner and mainly Mäule staining, this reduction in S unit content appears to be restricted to the interfascicular fibers. Moreover, quantitative polymerase chain reaction analysis in atprx52 plants showed a general downregulation of genes involved in lignin biosynthetic pathway, as well as genes related to secondary cell wall. On the other hand, other routes from phenylpropanoid metabolism were induced. Taken together, our results indicate that AtPrx52 is involved in the synthesis of S units in interfascicular fibers at late stages of the lignification process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Peroxidases/metabolismo , Caules de Planta/metabolismo , Xilema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Lignina/ultraestrutura , Microscopia Eletrônica de Transmissão , Mutação , Peroxidases/genética , Caules de Planta/genética , Caules de Planta/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xilema/genética
2.
J Integr Plant Biol ; 57(4): 357-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25735403

RESUMO

Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.


Assuntos
Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Zea mays/citologia , Zea mays/metabolismo , Arabinose/metabolismo , Vias Biossintéticas/genética , Parede Celular/efeitos dos fármacos , Células Cultivadas , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Nitrilas/farmacologia , Oxilipinas/metabolismo , Fenóis/metabolismo , Polissacarídeos/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem , Suspensões , Xilanos/metabolismo , Xilose/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/genética
3.
Nitric Oxide ; 39: 20-8, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24747108

RESUMO

Nitric oxide (NO) is a signal molecule involved in several physiological processes in plants, including root development. Despite the importance of NO as a root growth regulator, the knowledge about the genes and metabolic pathways modulated by NO in this process is still limited. A constraint to unravel these pathways has been the use of exogenous applications of NO donors that may produce toxic effects. We have analyzed the role of NO in root architecture through the depletion of endogenous NO using the scavenger cPTIO. Sunflower seedlings growing in liquid medium supplemented with cPTIO showed unaltered primary root length while the number of lateral roots was deeply reduced; indicating that endogenous NO participates in determining root branching in sunflower. The transcriptional changes induced by NO depletion have been analyzed using a large-scale approach. A microarray analysis showed 330 genes regulated in the roots (p≤0.001) upon endogenous NO depletion. A general cPTIO-induced up-regulation of genes involved in the lignin biosynthetic pathway was observed. Even if no detectable changes in total lignin content could be detected, cell walls analyses revealed that the ratio G/S lignin increased in roots treated with cPTIO. This means that endogenous NO may control lignin composition in planta. Our results suggest that a fine tuning regulation of NO levels could be used by plants to regulate root architecture and lignin composition. The functional implications of these findings are discussed.


Assuntos
Helianthus/efeitos dos fármacos , Óxido Nítrico/farmacologia , Sequestradores de Radicais Livres/farmacologia , Perfilação da Expressão Gênica , Helianthus/química , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Lignina/análise , Lignina/química , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
4.
Ann Bot ; 114(5): 923-36, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25139427

RESUMO

BACKGROUND AND AIMS: Peroxidase isoenzymes play diverse roles in plant physiology, such as lignification and defence against pathogens. The actions and regulation of many peroxidases are not known with much accuracy. A number of studies have reported direct involvement of peroxidase isoenzymes in the oxidation of monolignols, which constitutes the last step in the lignin biosynthesis pathway. However, most of the available data concern only peroxidases and lignins from angiosperms. This study describes the molecular cloning of two novel peroxidases from the 'living fossil' Ginkgo biloba and their regulation by salt stress and salicylic acid. METHODS: Suspension cell cultures were used to purify peroxidases and to obtain the cDNAs. Treatments with salicylic acid and sodium chloride were performed and peroxidase activity and gene expression were monitored. KEY RESULTS: A novel peroxidase was purified, which preferentially used p-hydroxycinnamyl alcohols as substrates and was able to form dehydrogenation polymers in vitro from coniferyl and sinapyl alcohols. Two peroxidase full-length cDNAs, GbPrx09 and GbPrx10, were cloned. Both peroxidases showed high similarity to other basic peroxidases with a putative role in cell wall lignification. Both GbPrx09 and GbPrx10 were expressed in leaves and stems of the plant. Sodium chloride enhanced the gene expression of GbPrx09 but repressed GbPrx10, whereas salicylic acid strongly repressed both GbPrx09 and GbPrx10. CONCLUSIONS: Taken together, the data suggest the participation of GbPrx09 and GbPrx10 in the developmental lignification programme of the cell wall. Both peroxidases possess the structural characteristics necessary for sinapyl alcohol oxidation. Moreover, GbPrx09 is also involved in lignification induced by salt stress, while salicylic acid-mediated lignification is not a result of GbPrx09 and GbPrx10 enzymatic activity.


Assuntos
Ginkgo biloba/genética , Peroxidase/genética , Estresse Fisiológico , Sequência de Aminoácidos , Parede Celular/metabolismo , Clonagem Molecular , DNA Complementar/genética , Fósseis , Ginkgo biloba/efeitos dos fármacos , Ginkgo biloba/metabolismo , Lignina/metabolismo , Dados de Sequência Molecular , Oxirredução , Peroxidase/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Propanóis/análise , Propanóis/metabolismo , RNA de Plantas/genética , Ácido Salicílico/farmacologia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Cloreto de Sódio/farmacologia
5.
Planta ; 237(6): 1599-612, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23508663

RESUMO

Lignins result from the oxidative polymerization of three hydroxycinnamyl (p-coumaryl, coniferyl, and sinapyl) alcohols in a reaction mediated by peroxidases. The most important of these is the cationic peroxidase from Zinnia elegans (ZePrx), an enzyme considered to be responsible for the last step of lignification in this plant. Bibliographical evidence indicates that the arabidopsis peroxidase 72 (AtPrx72), which is homolog to ZePrx, could have an important role in lignification. For this reason, we performed a bioinformatic, histochemical, photosynthetic, and phenotypical and lignin composition analysis of an arabidopsis knock-out mutant of AtPrx72 with the aim of characterizing the effects that occurred due to the absence of expression of this peroxidase from the aspects of plant physiology such as vascular development, lignification, and photosynthesis. In silico analyses indicated a high homology between AtPrx72 and ZePrx, cell wall localization and probably optimal levels of translation of AtPrx72. The histochemical study revealed a low content in syringyl units and a decrease in the amount of lignin in the atprx72 mutant plants compared to WT. The atprx72 mutant plants grew more slowly than WT plants, with both smaller rosette and principal stem, and with fewer branches and siliques than the WT plants. Lastly, chlorophyll a fluorescence revealed a significant decrease in ΦPSII and q L in atprx72 mutant plants that could be related to changes in carbon partitioning and/or utilization of redox equivalents in arabidopsis metabolism. The results suggest an important role of AtPrx72 in lignin biosynthesis. In addition, knock-out plants were able to respond and adapt to an insufficiency of lignification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Biologia Computacional , Lignina/biossíntese , Peroxidase/metabolismo , Peroxidases/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Asteraceae/enzimologia , Parede Celular/metabolismo , Clorofila/metabolismo , Clorofila A , Fluorescência , Modelos Moleculares , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutação/genética , Peroxidase/química , Peroxidases/genética , Fenótipo , Caules de Planta/anatomia & histologia , Estrutura Secundária de Proteína , Alinhamento de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier , Xilema/citologia , Xilema/metabolismo
6.
J Exp Bot ; 64(12): 3499-518, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23956408

RESUMO

Zinnia elegans constitutes one of the most useful model systems for studying xylem differentiation, which simultaneously involves secondary cell wall synthesis, cell wall lignification, and programmed cell death. Likewise, the in vitro culture system of Z. elegans has been the best characterized as the differentiation of mesophyll cells into tracheary elements allows study of the biochemistry and physiology of xylogenesis free from the complexity that heterogeneous plant tissues impose. Moreover, Z. elegans has emerged as an excellent plant model to study the involvement of peroxidases in cell wall lignification. This is due to the simplicity and duality of the lignification pattern shown by the stems and hypocotyls, and to the basic nature of the peroxidase isoenzyme. This protein is expressed not only in hypocotyls and stems but also in mesophyll cells transdifferentiating into tracheary elements. Therefore, not only does this peroxidase fulfil all the catalytic requirements to be involved in lignification overcoming all restrictions imposed by the polymerization step, but also its expression is inherent in lignification. In fact, its basic nature is not exceptional since basic peroxidases are differentially expressed during lignification in other model systems, showing unusual and unique biochemical properties such as oxidation of syringyl moieties. This review focuses on the experiments which led to a better understanding of the lignification process in Zinnia, starting with the basic knowledge about the lignin pattern in this plant, how lignification takes place, and how a sole basic peroxidase with unusual catalytic properties is involved and regulated by hormones, H2O2, and nitric oxide.


Assuntos
Asteraceae/enzimologia , Asteraceae/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Peroxidases/genética , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Asteraceae/citologia , Diferenciação Celular , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Peroxidases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
7.
Plants (Basel) ; 10(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34371679

RESUMO

Physcomitrium (Physcomitrella) patens is a bryophyte highly tolerant to different stresses, allowing survival when water supply is a limiting factor. This moss lacks a true vascular system, but it has evolved a primitive water-conducting system that contains lignin-like polyphenols. By means of a three-step protocol, including ammonium sulfate precipitation, adsorption chromatography on phenyl Sepharose and cationic exchange chromatography on SP Sepharose, we were able to purify and further characterize a novel class III peroxidase, PpaPrx19, upregulated upon salt and H2O2 treatments. This peroxidase, of a strongly basic nature, shows surprising homology to angiosperm peroxidases related to lignification, despite the lack of true lignins in P. patens cell walls. Moreover, PpaPrx19 shows catalytic and kinetic properties typical of angiosperm peroxidases involved in oxidation of monolignols, being able to efficiently use hydroxycinnamyl alcohols as substrates. Our results pinpoint the presence in P. patens of peroxidases that fulfill the requirements to be involved in the last step of lignin biosynthesis, predating the appearance of true lignin.

8.
BMC Plant Biol ; 10: 232, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20977727

RESUMO

BACKGROUND: Verticillium dahliae is a fungal pathogen that infects a wide range of hosts. The only known genes for resistance to Verticillium in the Solanaceae are found in the tomato (Solanum lycopersicum) Ve locus, formed by two linked genes, Ve1 and Ve2. To characterize the resistance response mediated by the tomato Ve gene, we inoculated two nearly isogenic tomato lines, LA3030 (ve/ve) and LA3038 (Ve/Ve), with V. dahliae. RESULTS: We found induction of H2O2 production in roots of inoculated plants, followed by an increase in peroxidase activity only in roots of inoculated resistant plants. Phenylalanine-ammonia lyase (PAL) activity was also increased in resistant roots 2 hours after inoculation, while induction of PAL activity in susceptible roots was not seen until 48 hours after inoculation. Phenylpropanoid metabolism was also affected, with increases in ferulic acid, p-coumaric acid, vanillin and p-hydroxybenzaldehyde contents in resistant roots after inoculation. Six tomato PAL cDNA sequences (PAL1 - PAL6) were found in the SolGenes tomato EST database. RT-PCR analysis showed that these genes were expressed in all organs of the plant, albeit at different levels. Real-time RT-PCR indicated distinct patterns of expression of the different PAL genes in V. dahliae-inoculated roots. Phylogenetic analysis of 48 partial PAL cDNAs corresponding to 19 plant species grouped angiosperm PAL sequences into four clusters, suggesting functional differences among the six tomato genes, with PAL2 and PAL6 presumably involved in lignification, and the remaining PAL genes implicated in other biological processes. An increase in the synthesis of lignins was found 16 and 28 days after inoculation in both lines; this increase was greater and faster to develop in the resistant line. In both resistant and susceptible inoculated plants, an increase in the ratio of guaiacyl/syringyl units was detected 16 days after inoculation, resulting from the lowered amount of syringyl units in the lignins of inoculated plants. CONCLUSIONS: The interaction between the tomato and V. dahliae triggered a number of short- and long-term defensive mechanisms. Differences were found between compatible and incompatible interactions, including onset of H2O2 production and activities of peroxidase and PAL, and phenylpropanoid metabolism and synthesis of lignins.


Assuntos
Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Solanum lycopersicum/metabolismo , Sequência de Bases , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fenol/metabolismo , Fenilalanina Amônia-Liase/classificação , Fenilalanina Amônia-Liase/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Espectroscopia de Infravermelho com Transformada de Fourier , Verticillium/fisiologia
9.
J Sci Food Agric ; 90(7): 1155-62, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20393996

RESUMO

BACKGROUND: The effectiveness of the analysis of cell wall-bound hydroxycinnamic acids and the composition of lignin to evaluate the in vivo digestibility of a silage collection with unknown botanical composition was evaluated. RESULTS: Syringyl units content and total etherified phenols showed the highest correlation coefficients with in vivo dry matter digestibility (IVDMD) (r = - 0.792 and r = - 0.703, respectively), while guaiacyl units and total phenols showed the highest correlation coefficients with in vivo organic matter digestibility (IVOMD) (r = - 0.871 and r = - 0.817, respectively). Using the above-mentioned chemical parameters, 10 equations were also developed to predict in vivo digestibility. The prediction of IVDMD produced a high adjusted R(2) value (0.710) using syringyl, total lignin, etherified total phenols, esterified ferulic acid and total phenol content as predictors. The prediction of IVOMD produced a higher adjusted R(2) value (0.821) using guaiacyl, total phenols, total ferulic acid and etherified p-coumaric acid content as predictors. CONCLUSION: Cell wall digestibility depends on a multiplicity of factors and it is not possible to attribute a causal effect on in vivo digestibility to any single factor. However, syringyl and guaiacyl content and etherified phenols emerge as good predictors of digestibility.


Assuntos
Parede Celular/química , Cinamatos/análise , Digestão , Lignina/química , Fenóis/análise , Silagem/análise , Animais , Ácidos Cumáricos/análise , Fibras na Dieta/análise , Masculino , Propionatos , Ovinos
10.
Front Plant Sci ; 11: 900, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676088

RESUMO

Class III plant peroxidases (Prxs) are involved in the oxidative polymerization of lignins. Zinnia elegans Jacq. Basic peroxidase (ZePrx) has been previously characterized as capable of catalyzing this reaction in vitro and the role in lignin biosynthesis of several of its Arabidopsis thaliana homologous has been previously confirmed. In the present work, ZePrx was overexpressed in Nicotiana tabacum to further characterize its function in planta with particular attention to its involvement in lignin biosynthesis. Since Prxs are known to alter ROS levels by using them as electron acceptor or producing them in their catalytic activity, the impact of this overexpression in redox homeostasis was studied by analyzing the metabolites and enzymes of the ascorbate-glutathione cycle. In relation to the modification induced by ZePrx overexpression in lignin composition and cellular metabolism, the carbohydrate composition of the cell wall as well as overall gene expression through RNA-Seq were analyzed. The obtained results indicate that the overexpression of ZePrx caused an increase in syringyl lignin in cell wall stems, suggesting that ZePrx is relevant for the oxidation of sinapyl alcohol during lignin biosynthesis, coherently with its S-peroxidase nature. The increase in the glucose content of the cell wall and the reduction of the expression of several genes involved in secondary cell wall biosynthesis suggests the occurrence of a possible compensatory response to maintain cell wall properties. The perturbation of cellular redox homeostasis occurring as a consequence of ZePrx overexpression was kept under control by an increase in APX activity and a reduction in ascorbate redox state. In conclusion, our results confirm the role of ZePrx in lignin biosynthesis and highlight that its activity alters cellular pathways putatively aimed at maintaining redox homeostasis.

11.
Physiol Plant ; 135(2): 196-213, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19055540

RESUMO

Suspension cell cultures (SCCs) from one of the oldest seed plants, Ginkgo biloba, show unpredictable alterations in the nature of the lignins, such as is the recruitment of sinapyl alcohol for lignin biosynthesis, compared with the woody tissues of the same species, which lack syringyl (S) lignins. These results show that, in this gymnosperm, the genes involved in sinapyl alcohol biosynthesis are latent and that their regulatory regions respond, by initiating gene expression, to the developmental signals and the environmental clues, which condition its in vitro culture. G. biloba SCCs not only synthesize S lignins but also their extracellular proteome contains both class III peroxidases capable of oxidizing sinapyl alcohol and enzymes involved in H2O2 production, observation which suggests that the peroxidase branch for the oxidative coupling of sinapyl alcohol units into lignins is operative. The incomplete knowledge of the G. biloba peroxidase-encoding genes led us to purify, characterize and partially sequence the peroxidase responsible for monolignol oxidation. When the major peroxidase from G. biloba SCCs (GbPrx) was purified to homogeneity, it showed absorption maxima in the visible region at 414 (Soret band), and at 543 and 570 nm, which calls to mind those shown by low-spin ferric peroxidases. However, the results also showed that the paraperoxidase-like character of GbPrx is not an obstacle for oxidizing the three monolignols compared with high-spin ferric peroxidases. Taken together, these results mean that the time at which the evolutionary gain of the segment of the route that leads to the biosynthesis of S lignins took place in seed plants needs to be revised.


Assuntos
Evolução Biológica , Ginkgo biloba/enzimologia , Lignina/biossíntese , Peroxidase/metabolismo , Fenilpropionatos/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Ginkgo biloba/genética , Peróxido de Hidrogênio/metabolismo , Dados de Sequência Molecular , Oxirredução , Peroxidase/genética , Proteômica , Alinhamento de Sequência
12.
J Plant Physiol ; 230: 40-50, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30145275

RESUMO

Benzothiadiazole (BTH) acts as a priming agent in plant defence leading to a reduction in penetration and development of the root-knot nematode Meloidogyne incognita in susceptible tomato roots. Changes in lignin biosynthesis in the susceptible tomato cv. Roma following nematode infection and/or BTH treatment were investigated in comparison to the resistant cv. Rossol. Both untreated and BTH-treated susceptible infected roots (galls) showed an increased level of expression of lignin synthesis-related genes (PAL, C4H, HCT and F5H) at early times during infection (2-4 days post inoculation). Peroxidase (soluble and cell-wall bound, POX) enzyme activities increased after inoculation with M. incognita and the priming effect of BTH treatment was evident at later stages of infection (7 days post inoculation). As expected, the induction of PAL and POXs and lignin synthesis-related genes was faster and greater in resistant roots after infection. Histochemical analysis revealed accumulation of higher lignin levels at later infection stages in BTH-treated galls compared to untreated ones. Furthermore, the monomer composition of lignin indicated a different composition in guaiacyl (G) and syringyl (S) units in BTH-treated galls compared to untreated galls. The increase in G units made G/S ratio similar to that in the resistant genotype. Overall, lignin played a critical role in tomato defence to M. incognita in response to BTH.


Assuntos
Lignina/metabolismo , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Solanum lycopersicum/metabolismo , Tiadiazóis/farmacologia , Animais , Peróxido de Hidrogênio/metabolismo , Lignina/biossíntese , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/parasitologia , Peroxidases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tylenchoidea
13.
Plant Sci ; 258: 12-20, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28330555

RESUMO

Verticillium dahliae is an economically relevant soilborne pathogen that causes vascular wilt in several crops, including pepper (Capsicum annuum). Fungal infection is usually visualized as a vascular browning, likely due to the onset of phenylpropanoid metabolism, which also seems to play a crucial role in the tolerance of some pepper varieties. In the current work, the potential function of distinct phenylpropanoid derivatives (suberin, lignin and phenolic compounds) in the pepper tolerance response against V. dahliae, was investigated. Histochemical and biochemical analyses ruled out suberin as a key player in the pepper-fungus interaction. However, changes observed in lignin composition and higher deposition of bound phenolics in infected stems seemed to contribute to the reinforcement of cell walls and the impairment of V. dahliae colonization. Most importantly, this is the first time that the accumulation of the hydroxycinnamic acid amide N-feruloyltyramine was reported in pepper stems in response to a vascular fungus. Fungitoxic activity for that hydroxycinnamate-tyramine conjugate was demonstrated as well.


Assuntos
Capsicum/microbiologia , Doenças das Plantas/microbiologia , Propanóis/metabolismo , Verticillium/patogenicidade , Capsicum/metabolismo , Parede Celular/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Fenóis/metabolismo , Tiramina/análogos & derivados , Tiramina/metabolismo
14.
FEBS Lett ; 580(18): 4311-6, 2006 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-16842784

RESUMO

The last step of lignin biosynthesis in Zinnia elegans suspension cell cultures (SCCs) catalyzed by peroxidase (ZePrx) has been characterized. The k(3) values shown by ZePrx for the three monolignols revealed that sinapyl alcohol was the best substrate, and were proportional to their oxido/reduction potentials, signifying that these reactions are driven exclusively by redox thermodynamic forces. Feeding experiments demonstrate that cell wall lignification in SCCs is controlled by the rate of supply of H(2)O(2). The results also showed that sites for monolignol beta-O-4 cross-coupling in cell walls may be saturated, suggesting that the growth of the lineal lignin macromolecule is not infinite.


Assuntos
Asteraceae/enzimologia , Lignina/biossíntese , Peroxidase/química , Proteínas de Plantas/química , Asteraceae/citologia , Células Cultivadas , Peroxidase/metabolismo , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Proteínas de Plantas/metabolismo
15.
Plant Sci ; 239: 192-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26398803

RESUMO

Class III peroxidases are glycoproteins with a major role in cell wall maturation such as lignin formation. Peroxidases are usually present in a high number of isoenzymes, which complicates to assign specific functions to individual peroxidase isoenzymes. Arabidopsis genome encodes for 73 peroxidases, among which AtPrx72 has been shown to participate in lignification. Here, we report by using knock out peroxidase mutants how the disruption of AtPrx72 causes thinner secondary walls in interfascicular fibres but not in the xylem of the stem. This effect is also age-dependent, and AtPrx72 function seems to be particularly important when lignification prevails over elongation processes. Finally, the suppression AtPrx72 leads to the down-regulation of lignin biosynthesis pathway, as well as genes and transcription factors involved in secondary wall thickening.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Lignina/genética , Peroxidases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Técnicas de Inativação de Genes , Lignina/biossíntese , Peroxidases/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Metabolismo Secundário
16.
J Plant Physiol ; 175: 86-94, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25506770

RESUMO

Syringyl lignins result from the oxidative polymerization of sinapyl alcohol in a reaction mediated by syringyl (basic) peroxidases. Several peroxidases have been identified in the genome of Arabidopsis thaliana as close homologues to ZePrx, the best characterized basic peroxidase so far, but none of these has been directly involved in lignification. We have used a knock-out mutant of AtPrx4, the closest homologue to ZePrx, to study the involvement of this basic peroxidase in the physiology of the plant under both long- and short-day light conditions. Our results suggest that AtPrx4 is involved in cell wall lignification, especially in syringyl monomer formation. The disruption of AtPrx4 causes a decrease in syringyl units proportion, but only when light conditions are optimal. Moreover, the effect of AtPrx4 disruption is age-dependent, and it is only significant when the elongation process of the stem has ceased and lignification becomes active. In conclusion, AtPrx4 emerges as a basic peroxidase regulated by day length with an important role in lignification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Peroxidase/metabolismo , Peroxidases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Oxirredução , Peroxidase/genética , Peroxidases/genética , Caules de Planta/enzimologia , Caules de Planta/genética
17.
FEBS Lett ; 529(2-3): 198-202, 2002 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-12372600

RESUMO

Characterization of lignified Zinnia elegans hypocotyls by both alkaline nitrobenzene oxidation and thioacidolysis reveals that coniferyl alcohol units are mainly found as part of 4-O-linked end groups and aryl-glycerol-beta-aryl ether (beta-O-4) structures. Z. elegans hypocotyls also contain a basic peroxidase (EC 1.11.1.7) capable of oxidizing coniferyl alcohol in the absence of H(2)O(2). Results showed that the oxidase activity of the Z. elegans basic peroxidase is stimulated by superoxide dismutase, and inhibited by catalase and anaerobic conditions. Results also showed that the oxidase activity of this peroxidase is due to an evolutionarily gained optimal adaptation of the enzyme to the microM H(2)O(2) concentrations generated during the auto-oxidation of coniferyl alcohol, the stoichiometry of the chemical reaction (mol coniferyl alcohol auto-oxidized/mol H(2)O(2) formed) being 0.496. These results therefore suggest that the H(2)O(2) generated during the auto-oxidation of coniferyl alcohol is the main factor that drives the unusual oxidase activity of this highly conserved lignin-synthesizing class III peroxidase.


Assuntos
Peróxido de Hidrogênio/metabolismo , Lignina/biossíntese , Peroxidases/metabolismo , Fenóis/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Oxirredução
18.
New Phytol ; 163(1): 111-123, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33873795

RESUMO

• Verticillium dahliae is a soilborne pathogen that causes vascular wilt in pepper (Capsicum annuum var. annuum). Here we study to what extent changes in the lignification response of peppers condition tolerance of wilt. • For this, the quantum yield (ΦPSII ), the linear electron transport rate (ETR), and the lignification response (monomer composition and crosslinking) were studied in three C. annuum cultivars differing in degree of tolerance. • The results showed that in tolerant cultivars (Padrón and Yolo Wonder), both ΦPSII and ETR showed significantly higher levels at saturating photosynthetically active radiation values. This was not, however, the case for cv. Luesia, which showed a significant decrease in ΦPSII , ETR and nonphotochemical quenching values, suggesting that photochemical processes are strongly damaged in this cultivar as a consequence of the disease. The analysis of stem lignins in tolerant cultivars revealed that they were mainly composed of p-hydroxyphenyl units, while levels of ß-O-4-linked coniferyl and sinapyl alcohols were significantly lower. • It is concluded that through the observed changes in stem lignins (monomer composition and crosslinking) peppers retard, since they maintain leaf photosynthetic integrity, but do not stop (since wilt symptoms are not avoided) V. dahliae fungal hyphae penetration.

19.
Physiol Plant ; 114(1): 33-40, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11982932

RESUMO

The lignifying xylem from Zinnia elegans stems gives an intense reaction with 3,3',5,5'-tetramethylbenzidine (TMB), a reagent previously reported to be specific for peroxidase/H2O2. However, the staining of lignifying xylem cells with TMB is apparently the result of two independent mechanisms: one, the catalase-sensitive (H2O2-dependent) peroxidase-mediated oxidation of TMB, and the other, the catalase-insensitive oxidation of TMB, probably mediated by xylem oxidases which are specific from lignifying tissues. The catalase-insensitive oxidation of TMB by the Z. elegans xylem was sensitive to sodium nitroprusside (SNP), a nitric oxide (NO)-releasing compound that, when used at 5.0 mM, is capable of sustaining NO concentrations of 6.1 &mgr;M in the aqueous phase. This effect of SNP was totally reversed by 150 &mgr;M 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide (PTIO), an efficient NO scavenger in biological systems, so the above-mentioned effect must be ascribed to NO, and not to other nitrogen oxides. This response of the catalase-insensitive TMB-oxidase activity of the lignifying Z. elegans xylem was similar to that shown by a basic peroxidase isolated from the intercellular washing fluid, which showed TMB-oxidase activity, and which was also inhibited by 5 mM SNP, the effect of SNP also being reversed by 150 &mgr;M PTIO. These results suggest that peroxidase was the enzyme responsible for the NO-sensitive catalase-insensitive TMB-oxidase activity of the lignifying Z. elegans xylem. Further support for this statement was obtained from competitive inhibitor-dissected histochemistry, which showed that this stain responded to peroxidase-selective competitive inhibitors, such as ferulic acid and ferrocyanide, in a similar way to the Z. elegans basic peroxidase. From these results, we conclude that this NO-sensitive catalase-insensitive oxidation of TMB is apparently performed by the Z. elegans basic peroxidase, and that the regulation of this enzyme by NO may constitute an intrinsically programmed event during the differentiation and death of the xylem.

20.
J Agric Food Chem ; 50(5): 1188-91, 2002 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-11853502

RESUMO

Pepper (cv. Padrón) shows a spatial gradient in the content of phenolic compounds, and particularly of capsaicinoids, along the stem. These compounds were consistently more abundant in apical fruits than in fruits belonging to middle and basal segments. Analysis of the two principal capsaicinoids in fruits showed that the proportion of capsaicin was always higher than that of dihydrocapsaicin. Capsaicinoids were also found to be present in vegetative organs, such as stem and leaves. In this case, the proportion of individual capsaicinoids was different than that in fruits, and dihydrocapsaicin was found to be more abundant. To find out whether the capsaicinoids in vegetative organs came from the fruits, the floral buds were removed and fruit formation was prevented. Capsaicinoids were not detected in the stem and leaves of floral bud-deprived plants, suggesting that they did originate from the fruit.


Assuntos
Capsaicina/análogos & derivados , Capsaicina/análise , Capsicum/química , Capsicum/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Fenóis/análise , Caules de Planta/química , Estruturas Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA