Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409131

RESUMO

The endoplasmic reticulum represents the gateway to the secretory pathway. Here, proteins destined for secretion, as well as soluble and membrane proteins that reside in the endomembrane system and plasma membrane, are triaged from proteins that will remain in the cytosol or be targeted to other cellular organelles. This process requires the faithful recognition of specific targeting signals and subsequent delivery mechanisms to then target them to the translocases present at the ER membrane, which can either translocate them into the ER lumen or insert them into the lipid bilayer. This review focuses on the current understanding of the first step in this process representing the targeting phase. Targeting is typically mediated by cleavable N-terminal hydrophobic signal sequences or internal membrane anchor sequences; these can either be captured co-translationally at the ribosome or recognised post-translationally and then delivered to the ER translocases. Location and features of the targeting sequence dictate which of several overlapping targeting pathway substrates will be used. Mutations in the targeting machinery or targeting signals can be linked to diseases.


Assuntos
Retículo Endoplasmático , Sinais Direcionadores de Proteínas , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Proteico
2.
Nature ; 540(7631): 45-46, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27905422
3.
Biochim Biophys Acta ; 1833(11): 2392-402, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23481039

RESUMO

Co-translational protein targeting to the endoplasmic reticulum (ER), represents an evolutionary-conserved mechanism to target proteins into the secretory pathway. In this targeting pathway proteins possessing signal sequences are recognised at the ribosome by the signal recognition particle while they are still undergoing synthesis. This triggers their delivery to the ER protein translocation channel, where they are directly translocated into the ER. Here we review the current understanding of this translocation pathway and how molecular details obtained in the related bacterial system have provided insight into the mechanism of targeting and translocation. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Partícula de Reconhecimento de Sinal , Animais , Humanos , Biossíntese de Proteínas , Transporte Proteico
4.
PLoS Biol ; 9(5): e1001073, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21655302

RESUMO

Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%-80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species.


Assuntos
Retículo Endoplasmático/metabolismo , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Acetilação , Biologia Computacional/métodos , Citosol/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Wiley Interdiscip Rev RNA ; 15(4): e1867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39048533

RESUMO

The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Animais , Humanos , Proteínas/metabolismo , Proteínas/genética
6.
Nature ; 444(7118): 507-11, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17086193

RESUMO

Membrane and secretory proteins can be co-translationally inserted into or translocated across the membrane. This process is dependent on signal sequence recognition on the ribosome by the signal recognition particle (SRP), which results in targeting of the ribosome-nascent-chain complex to the protein-conducting channel at the membrane. Here we present an ensemble of structures at subnanometre resolution, revealing the signal sequence both at the ribosomal tunnel exit and in the bacterial and eukaryotic ribosome-SRP complexes. Molecular details of signal sequence interaction in both prokaryotic and eukaryotic complexes were obtained by fitting high-resolution molecular models. The signal sequence is presented at the ribosomal tunnel exit in an exposed position ready for accommodation in the hydrophobic groove of the rearranged SRP54 M domain. Upon ribosome binding, the SRP54 NG domain also undergoes a conformational rearrangement, priming it for the subsequent docking reaction with the NG domain of the SRP receptor. These findings provide the structural basis for improving our understanding of the early steps of co-translational protein sorting.


Assuntos
Modelos Moleculares , Biossíntese de Proteínas , Sinais Direcionadores de Proteínas , Ribossomos/química , Partícula de Reconhecimento de Sinal/química , Animais , Sequência de Bases , Escherichia coli/genética , Mamíferos/genética , Dados de Sequência Molecular , RNA Ribossômico/química
7.
FEBS J ; 289(22): 6835-6862, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33960686

RESUMO

The Sec61 complex is the major protein translocation channel of the endoplasmic reticulum (ER), where it plays a central role in the biogenesis of membrane and secretory proteins. Whilst Sec61-mediated protein translocation is typically coupled to polypeptide synthesis, suggestive of significant complexity, an obvious characteristic of this core translocation machinery is its surprising simplicity. Over thirty years after its initial discovery, we now understand that the Sec61 complex is in fact the central piece of an elaborate jigsaw puzzle, which can be partly solved using new research findings. We propose that the Sec61 complex acts as a dynamic hub for co-translational protein translocation at the ER, proactively recruiting a range of accessory complexes that enhance and regulate its function in response to different protein clients. It is now clear that the Sec61 complex does not have a monopoly on co-translational insertion, with some transmembrane proteins preferentially utilising the ER membrane complex instead. We also have a better understanding of post-insertion events, where at least one membrane-embedded chaperone complex can capture the newly inserted transmembrane domains of multi-span proteins and co-ordinate their assembly into a native structure. Having discovered this array of Sec61-associated components and competitors, our next challenge is to understand how they act together in order to expand the range and complexity of the membrane proteins that can be synthesised at the ER. Furthermore, this diversity of components and pathways may open up new opportunities for targeted therapeutic interventions designed to selectively modulate protein biogenesis at the ER.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Humanos , Canais de Translocação SEC/genética , Canais de Translocação SEC/química , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Transporte Proteico/fisiologia , Processamento de Proteína Pós-Traducional
8.
J Cell Sci ; 122(Pt 23): 4393-400, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19903691

RESUMO

Production and trafficking of proteins entering the secretory pathway of eukaryotic cells is coordinated at the endoplasmic reticulum (ER) in a process that begins with protein translocation via the membrane-embedded ER translocon. The same complex is also responsible for the co-translational integration of membrane proteins and orchestrates polypeptide modifications that are often essential for protein function. We now show that the previously identified inhibitor of ER-associated degradation (ERAD) eeyarestatin 1 (ES(I)) is a potent inhibitor of protein translocation. We have characterised this inhibition of ER translocation both in vivo and in vitro, and provide evidence that ES(I) targets a component of the Sec61 complex that forms the membrane pore of the ER translocon. Further analyses show that ES(I) acts by preventing the transfer of the nascent polypeptide from the co-translational targeting machinery to the Sec61 complex. These results identify a novel effect of ES(I), and suggest that the drug can modulate canonical protein transport from the cytosol into the mammalian ER both in vitro and in vivo.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Hidrazonas/farmacologia , Hidroxiureia/análogos & derivados , Proteínas de Membrana/metabolismo , Transporte Proteico/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Hidroxiureia/farmacologia , Imunoprecipitação , Canais de Translocação SEC
9.
Nature ; 427(6977): 808-14, 2004 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-14985753

RESUMO

Cotranslational translocation of proteins across or into membranes is a vital process in all kingdoms of life. It requires that the translating ribosome be targeted to the membrane by the signal recognition particle (SRP), an evolutionarily conserved ribonucleoprotein particle. SRP recognizes signal sequences of nascent protein chains emerging from the ribosome. Subsequent binding of SRP leads to a pause in peptide elongation and to the ribosome docking to the membrane-bound SRP receptor. Here we present the structure of a targeting complex consisting of mammalian SRP bound to an active 80S ribosome carrying a signal sequence. This structure, solved to 12 A by cryo-electron microscopy, enables us to generate a molecular model of SRP in its functional conformation. The model shows how the S domain of SRP contacts the large ribosomal subunit at the nascent chain exit site to bind the signal sequence, and that the Alu domain reaches into the elongation-factor-binding site of the ribosome, explaining its elongation arrest activity.


Assuntos
Elongação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Microscopia Crioeletrônica , Mamíferos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ribossomos/química , Ribossomos/ultraestrutura , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/ultraestrutura , Relação Estrutura-Atividade
10.
J Cell Biol ; 210(2): 287-301, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26195668

RESUMO

The ribosome exit site is a focal point for the interaction of protein-biogenesis factors that guide the fate of nascent polypeptides. These factors include chaperones such as NAC, N-terminal-modifying enzymes like Methionine aminopeptidase (MetAP), and the signal recognition particle (SRP), which targets secretory and membrane proteins to the ER. These factors potentially compete with one another in the short time-window when the nascent chain first emerges at the exit site, suggesting a need for regulation. Here, we show that MetAP contacts the ribosome at the universal adaptor site where it is adjacent to the α subunit of NAC. SRP is also known to contact the ribosome at this site. In the absence of NAC, MetAP and SRP antagonize each other, indicating a novel role for NAC in regulating the access of MetAP and SRP to the ribosome. NAC also functions in SRP-dependent targeting and helps to protect substrates from aggregation before translocation.


Assuntos
Chaperonas Moleculares/fisiologia , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminopeptidases/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/fisiologia , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/fisiologia , Partícula de Reconhecimento de Sinal/metabolismo
11.
Structure ; 23(10): 1838-1847, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26299945

RESUMO

G proteins of the Ras-family of small GTPases trace the evolution of eukaryotes. The earliest branching involves the closely related Arf, Sar1, and SRß GTPases associated with secretory membranes. SRß is an integral membrane component of the signal recognition particle (SRP) receptor that targets ribosome-nascent chain complexes to the ER. How SRß integrates into the regulation of SRP-dependent membrane protein biogenesis is not known. Here we show that SRß-GTP interacts with ribosomes only in presence of SRα and present crystal structures of SRß in complex with the SRX domain of SRα in the GTP-bound state at 3.2 Å, and of GDP- and GDP · Mg(2+)-bound SRß at 1.9 Å and 2.4 Å, respectively. We define the GTPase switch cycle of SRß and identify specific differences to the Arf and Sar1 families with implications for GTPase regulation. Our data allow a better integration of SRß into the scheme of protein targeting.


Assuntos
Chaetomium/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/química , Membranas Intracelulares/metabolismo , Subunidades Proteicas/química , Partícula de Reconhecimento de Sinal/química , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Evolução Biológica , Chaetomium/genética , Cristalografia por Raios X , Retículo Endoplasmático/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Membranas Intracelulares/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Alinhamento de Sequência , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
Nat Commun ; 6: 10133, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26634806

RESUMO

Two distinct pathways deliver secretory proteins to the Sec61 protein translocase in the endoplasmic reticulum membrane. The canonical pathway requires the signal recognition particle (SRP) and its cognate receptor (SR), and targets ribosome-associated proteins to the Sec translocase. The SRP-independent pathway requires the Sec translocase-associated ER membrane protein Sec62 and can be uncoupled from translation. Here we show that SR switches translocons to SRP-dependent translocation by displacing Sec62. This activity localizes to the charged linker region between the longin and GTPase domains of SRα. Using truncation variants, crosslinking and translocation assays reveals two elements with distinct functions as follows: one rearranges the translocon, displacing Sec62 from Sec61. A second promotes ribosome binding and is conserved between all eukaryotes. These specific regions in SRα reprogramme the Sec translocon and facilitate recruitment of ribosome-nascent chain complexes. Overall, our study identifies an important function of SR, which mechanistically links two seemingly independent modes of translocation.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Ligação Proteica , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Canais de Translocação SEC , Partícula de Reconhecimento de Sinal/genética
14.
J Cell Biol ; 195(1): 55-70, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21949410

RESUMO

Multi-spanning membrane protein loops are directed alternately into the cytosol or ER lumen during cotranslational integration. Nascent chain exposure is switched after a newly synthesized transmembrane segment (TMS) enters the ribosomal tunnel. FRET measurements revealed that each TMS is initially extended, but folds into a compact conformation after moving 6-7 residues from the peptidyltransferase center, irrespective of loop size. The ribosome-induced folding of each TMS coincided with its photocrosslinking to ribosomal protein L17 and an inversion of compartmental exposure. This correlation indicates that successive TMSs fold and bind at a specific ribosomal tunnel site that includes L17, thereby triggering structural rearrangements of multiple components in and on both sides of the ER membrane, most likely via TMS-dependent L17 and/or rRNA conformational changes transmitted to the surface. Thus, cyclical changes at the membrane during integration are initiated by TMS folding, even though nascent chain conformation and location vary dynamically in the ribosome tunnel. Nascent chains therefore control their own trafficking.


Assuntos
Proteínas de Membrana/biossíntese , Biossíntese de Proteínas/fisiologia , Dobramento de Proteína , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Humanos , Saccharomyces cerevisiae
15.
J Cell Biol ; 185(5): 889-902, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19468070

RESUMO

Membrane protein integration occurs predominantly at the endoplasmic reticulum and is mediated by the translocon, which is formed by the Sec61p complex. The translocon binds to the ribosome at the polypeptide exit site such that integration occurs in a cotranslational manner. Ribosomal protein Rpl17 is positioned such that it contacts both the ribosome exit tunnel and the surface of the ribosome near the exit site, where it is intimately associated with the translocon. The presence of a trans-membrane (TM) segment inside the ribosomal exit tunnel leads to the recruitment of RAMP4 to the translocon at a site adjacent to Rpl17. This suggests a signaling function for Rpl17 such that it can recognize a TM segment inside the ribosome and triggers rearrangements of the translocon, priming it for subsequent TM segment integration.


Assuntos
Proteínas de Membrana/metabolismo , Ribossomos/fisiologia , Animais , Cães , Retículo Endoplasmático/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Canais de Translocação SEC
16.
Mol Biol Cell ; 19(7): 2876-84, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18448667

RESUMO

Targeting of proteins to the endoplasmic reticulum (ER) occurs cotranslationally necessitating the interaction of the signal recognition particle (SRP) and the translocon with the ribosome. Biochemical and structural studies implicate ribosomal protein Rpl25p as a major ribosome interaction site for both these factors. Here we characterize an RPL25GFP fusion, which behaves as a dominant mutant leading to defects in co- but not posttranslational translocation in vivo. In these cells, ribosomes still interact with ER membrane and the translocon, but are defective in binding SRP. Overexpression of SRP can restore ribosome binding of SRP, but only partially rescues growth and translocation defects. Our results indicate that Rpl25p plays a critical role in the recruitment of SRP to the ribosome.


Assuntos
Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , Proteínas Ribossômicas/fisiologia , Saccharomyces cerevisiae/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Retículo Endoplasmático/metabolismo , Genes Dominantes , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Chaperonas Moleculares/química , Mutação , Polirribossomos/metabolismo , Transporte Proteico , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/fisiologia , Frações Subcelulares/metabolismo
17.
Science ; 312(5774): 745-7, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16675701

RESUMO

Signal sequences of secretory and membrane proteins are recognized by the signal recognition particle (SRP) as they emerge from the ribosome. This results in their targeting to the membrane by docking with the SRP receptor, which facilitates transfer of the ribosome to the translocon. Here, we present the 8 angstrom cryo-electron microscopy structure of a "docking complex" consisting of a SRP-bound 80S ribosome and the SRP receptor. Interaction of the SRP receptor with both SRP and the ribosome rearranged the S domain of SRP such that a ribosomal binding site for the translocon, the L23e/L35 site, became exposed, whereas Alu domain-mediated elongation arrest persisted.


Assuntos
Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Cães , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico
18.
Mol Membr Biol ; 22(1-2): 3-15, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16092520

RESUMO

The Signal Recognition Particle (SRP) plays a critical role in the sorting of nascent secretory and membrane proteins. Remarkably, this function has been conserved from bacteria, where SRP delivers proteins to the inner membrane, through to eukaryotes, where SRP is required for targeting of proteins to the endoplasmic reticulum. This review focuses on present understanding of SRP structure and function and the relationship between the two. Furthermore, the similarities and differences in the structure, function and cellular role of SRP in bacteria, chloroplasts, fungi and mammals will be stressed.


Assuntos
Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/fisiologia , Animais , Bactérias/metabolismo , Cloroplastos/metabolismo , Mamíferos/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Leveduras/metabolismo
19.
Biochemistry ; 43(1): 107-17, 2004 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-14705936

RESUMO

The eukaryotic signal recognition particle (SRP) is essential for cotranslational targeting of proteins to the endoplasmic reticulum (ER). The SRP Alu domain is specifically required for delaying nascent chain elongation upon signal sequence recognition by SRP and was therefore proposed to interact directly with ribosomes. Using protein cross-linking, we provide experimental evidence that the Alu binding protein SRP14 is in close physical proximity of several ribosomal proteins in functional complexes. Cross-linking occurs even in the absence of a signal sequence in the nascent chain demonstrating that SRP can bind to all translating ribosomes and that close contacts between the Alu domain and the ribosome are independent of elongation arrest activity. Without a signal sequence, SRP14 cross-links predominantly to a protein of the large subunit. Upon signal sequence recognition, certain cross-linked products become detectable or more abundant revealing a change in the Alu domain-ribosome interface. At this stage, the Alu domain of SRP is located at the ribosomal subunit interface since SRP14 can be cross-linked to proteins from the large and small ribosomal subunits. Hence, these studies reveal differential modes of SRP-ribosome interactions mediated by the Alu domain.


Assuntos
Elementos Alu , Proteínas de Ligação a DNA/química , Sinais Direcionadores de Proteínas , Subunidades Proteicas/química , Ribonucleoproteínas/química , Proteínas Ribossômicas/química , Partícula de Reconhecimento de Sinal/química , Sítios de Ligação , Sequência Conservada , Reagentes de Ligações Cruzadas/química , Modelos Químicos , Modelos Moleculares , Estrutura Terciária de Proteína , Ribossomos/química
20.
Science ; 297(5585): 1345-8, 2002 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-12193787

RESUMO

Signal recognition particle (SRP), together with its receptor (SR), mediates the targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Using protein cross-linking, we detected distinct modes in the binding of SRP to the ribosome. During signal peptide recognition, SRP54 is positioned at the exit site close to ribosomal proteins L23a and L35. When SRP54 contacts SR, SRP54 is rearranged such that it is no longer close to L23a. This repositioning may allow the translocon to dock with the ribosome, leading to insertion of the signal peptide into the translocation channel.


Assuntos
Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Partícula de Reconhecimento de Sinal/metabolismo , Animais , Centrifugação com Gradiente de Concentração , Reagentes de Ligações Cruzadas , Cães , Guanosina Difosfato/metabolismo , Guanosina Difosfato/farmacologia , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/metabolismo , Guanilil Imidodifosfato/farmacologia , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Testes de Precipitina , Prolactina/genética , Prolactina/metabolismo , Ligação Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Proteínas Ribossômicas/química , Partícula de Reconhecimento de Sinal/química , Succinimidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA