Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Pathog ; 9(3): e1003255, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23544011

RESUMO

Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals.


Assuntos
Engenharia Biomédica/métodos , Febre Aftosa/prevenção & controle , Picornaviridae/genética , Vacinas Virais/biossíntese , Animais , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Chlorocebus aethiops , Cristalografia por Raios X , Febre Aftosa/imunologia , Vetores Genéticos/química , Vetores Genéticos/genética , Células HEK293 , Humanos , Modelos Moleculares , Picornaviridae/metabolismo , Picornaviridae/fisiologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera , Vacinação/efeitos adversos , Vacinação/métodos , Vacinação/veterinária , Vaccinia virus/química , Vaccinia virus/genética , Vaccinia virus/imunologia , Vacinas Virais/efeitos adversos , Vacinas Virais/química , Vacinas Virais/genética
2.
Commun Biol ; 5(1): 1293, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434067

RESUMO

Strategies to prevent the recurrence of poliovirus (PV) after eradication may utilise non-infectious, recombinant virus-like particle (VLP) vaccines. Despite clear advantages over inactivated or attenuated virus vaccines, instability of VLPs can compromise their immunogenicity. Glutathione (GSH), an important cellular reducing agent, is a crucial co-factor for the morphogenesis of enteroviruses, including PV. We report cryo-EM structures of GSH bound to PV serotype 3 VLPs showing that it can enhance particle stability. GSH binds the positively charged pocket at the interprotomer interface shown recently to bind GSH in enterovirus F3 and putative antiviral benzene sulphonamide compounds in other enteroviruses. We show, using high-resolution cryo-EM, the binding of a benzene sulphonamide compound with a PV serotype 2 VLP, consistent with antiviral activity through over-stabilizing the interprotomer pocket, preventing the capsid rearrangements necessary for viral infection. Collectively, these results suggest GSH or an analogous tight-binding antiviral offers the potential for stabilizing VLP vaccines.


Assuntos
Enterovirus , Poliovirus , Vacinas de Partículas Semelhantes a Vírus , Poliovirus/metabolismo , Antivirais/farmacologia , Benzeno , Sítios de Ligação , Antígenos Virais , Glutationa/metabolismo , Sulfonamidas
3.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298714

RESUMO

Following the success of global vaccination programmes using the live-attenuated oral and inactivated poliovirus vaccines (OPV and IPV), wild poliovirus (PV) is now only endemic in Afghanistan and Pakistan. However, the continued use of these vaccines poses potential risks to the eradication of PV. The production of recombinant PV virus-like particles (VLPs), which lack the viral genome offer great potential as next-generation vaccines for the post-polio world. We have previously reported production of PV VLPs using Pichia pastoris, however, these VLPs were in the non-native conformation (C Ag), which would not produce effective protection against PV. Here, we build on this work and show that it is possible to produce wt PV-3 and thermally stabilised PV-3 (referred to as PV-3 SC8) VLPs in the native conformation (D Ag) using Pichia pastoris. We show that the PV-3 SC8 VLPs provide a much-improved D:C antigen ratio as compared to wt PV-3, whilst exhibiting greater thermostability than the current IPV vaccine. Finally, we determine the cryo-EM structure of the yeast-derived PV-3 SC8 VLPs and compare this to previously published PV-3 D Ag structures, highlighting the similarities between these recombinantly expressed VLPs and the infectious virus, further emphasising their potential as a next-generation vaccine candidate for PV.


Assuntos
Poliomielite , Vacinas contra Poliovirus , Poliovirus , Humanos , Anticorpos Antivirais , Poliovirus/genética , Vacina Antipólio Oral
4.
NPJ Vaccines ; 6(1): 5, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420068

RESUMO

Global vaccination programs using live-attenuated oral and inactivated polio vaccine (OPV and IPV) have almost eradicated poliovirus (PV) but these vaccines or their production pose significant risk in a polio-free world. Recombinant PV virus-like particles (VLPs), lacking the viral genome, represent safe next-generation vaccines, however their production requires optimisation. Here we present an efficient mammalian expression strategy producing good yields of wild-type PV VLPs for all three serotypes and a thermostabilised variant for PV3. Whilst the wild-type VLPs were predominantly in the non-native C-antigenic form, the thermostabilised PV3 VLPs adopted the native D-antigenic conformation eliciting neutralising antibody titres equivalent to the current IPV and were indistinguishable from natural empty particles by cryo-electron microscopy with a similar stabilising lipidic pocket-factor in the VP1 ß-barrel. This factor may not be available in alternative expression systems, which may require synthetic pocket-binding factors. VLPs equivalent to these mammalian expressed thermostabilized particles, represent safer non-infectious vaccine candidates for the post-eradication era.

5.
Appl Environ Microbiol ; 75(3): 792-801, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19047386

RESUMO

The Agaricus bisporus serine proteinase 1 (SPR1) appears to be significant in both mycelial nutrition and senescence of the fruiting body. We report on the construction of an SPR promoter::green fluorescent protein (GFP) fusion cassette, pGreen_hph1_SPR_GFP, for the investigation of temporal and developmental expression of SPR1 in homobasidiomycetes and to determine how expression is linked to physiological and environmental stimuli. Monitoring of A. bisporus pGreen_hph1_SPR_GFP transformants on media rich in ammonia or containing different nitrogen sources demonstrated that SPR1 is produced in response to available nitrogen. In A. bisporus fruiting bodies, GFP activity was localized to the stipe of postharvest senescing sporophores. pGreen_hph1_SPR_GFP was also transformed into the model basidiomycete Coprinopsis cinerea. Endogenous C. cinerea proteinase activity was profiled during liquid culture and fruiting body development. Maximum activity was observed in the mature cap, while activity dropped during autolysis. Analysis of the C. cinerea genome revealed seven genes showing significant homology to the A. bisporus SPR1 and SPR2 genes. These genes contain the aspartic acid, histidine, and serine residues common to serine proteinases. Analysis of the promoter regions revealed at least one CreA and several AreA regulatory motifs in all sequences. Fruiting was induced in C. cinerea dikaryons, and fluorescence was determined in different developmental stages. GFP expression was observed throughout the life cycle, demonstrating that serine proteinase can be active in all stages of C. cinerea fruiting body development. Serine proteinase expression (GFP fluorescence) was most concentrated during development of young tissue, which may be indicative of high protein turnover during cell differentiation.


Assuntos
Agaricales/enzimologia , Proteínas Fúngicas/biossíntese , Perfilação da Expressão Gênica , Serina Endopeptidases/biossíntese , Agaricales/crescimento & desenvolvimento , Fusão Gênica Artificial , Meios de Cultura/química , Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Nitrogênio/metabolismo , Regiões Promotoras Genéticas , Serina Endopeptidases/genética
7.
Nat Commun ; 6: 8316, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446437

RESUMO

Picornaviruses are responsible for a range of human and animal diseases, but how their RNA genome is packaged remains poorly understood. A particularly poorly studied group within this family are those that lack the internal coat protein, VP4. Here we report the atomic structure of one such virus, Ljungan virus, the type member of the genus Parechovirus B, which has been linked to diabetes and myocarditis in humans. The 3.78-Å resolution cryo-electron microscopy structure shows remarkable features, including an extended VP1 C terminus, forming a major protuberance on the outer surface of the virus, and a basic motif at the N terminus of VP3, binding to which orders some 12% of the viral genome. This apparently charge-driven RNA attachment suggests that this branch of the picornaviruses uses a different mechanism of genome encapsidation, perhaps explored early in the evolution of picornaviruses.


Assuntos
Conformação de Ácido Nucleico , Parechovirus/fisiologia , RNA Viral/fisiologia , Animais , Linhagem Celular , Microscopia Crioeletrônica , DNA Complementar , RNA Viral/química
8.
Nat Struct Mol Biol ; 22(10): 788-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26389739

RESUMO

Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.


Assuntos
Proteínas do Capsídeo/química , Vírus da Febre Aftosa/química , Febre Aftosa/prevenção & controle , Modelos Moleculares , Vacinas Virais/química , Animais , Anticorpos Neutralizantes/sangue , Sequência de Bases , Proteínas do Capsídeo/metabolismo , Biologia Computacional/métodos , Microscopia Crioeletrônica , Cristalografia por Raios X , Desenho de Fármacos , Ensaio de Imunoadsorção Enzimática , Febre Aftosa/imunologia , Vírus da Febre Aftosa/imunologia , Microscopia Eletrônica , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vacinas Virais/imunologia
9.
J Virol Methods ; 187(2): 406-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23174161

RESUMO

Foot-and-mouth disease virus (FMDV) is a significant economically and distributed globally pathogen of Artiodactyla. Current vaccines are chemically inactivated whole virus particles that require large-scale virus growth in strict bio-containment with the associated risks of accidental release or incomplete inactivation. Non-infectious empty capsids are structural mimics of authentic particles with no associated risk and constitute an alternate vaccine candidate. Capsids self-assemble from the processed virus structural proteins, VP0, VP3 and VP1, which are released from the structural protein precursor P1-2A by the action of the virus-encoded 3C protease. To date recombinant empty capsid assembly has been limited by poor expression levels, restricting the development of empty capsids as a viable vaccine. Here expression of the FMDV structural protein precursor P1-2A in insect cells is shown to be efficient but linkage of the cognate 3C protease to the C-terminus reduces expression significantly. Inactivation of the 3C enzyme in a P1-2A-3C cassette allows expression and intermediate levels of 3C activity resulted in efficient processing of the P1-2A precursor into the structural proteins which assembled into empty capsids. Expression was independent of the insect host cell background and leads to capsids that are recognised as authentic by a range of anti-FMDV bovine sera suggesting their feasibility as an alternate vaccine.


Assuntos
Biotecnologia/métodos , Capsídeo/imunologia , Cisteína Endopeptidases/biossíntese , Vírus da Febre Aftosa/isolamento & purificação , Expressão Gênica , Tecnologia Farmacêutica/métodos , Proteínas Virais/biossíntese , Vacinas Virais/isolamento & purificação , Proteases Virais 3C , Animais , Linhagem Celular , Cisteína Endopeptidases/genética , Regulação para Baixo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Insetos , Proteínas Virais/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
10.
Nat Commun ; 4: 1929, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23728514

RESUMO

It remains largely mysterious how the genomes of non-enveloped eukaryotic viruses are transferred across a membrane into the host cell. Picornaviruses are simple models for such viruses, and initiate this uncoating process through particle expansion, which reveals channels through which internal capsid proteins and the viral genome presumably exit the particle, although this has not been clearly seen until now. Here we present the atomic structure of an uncoating intermediate for the major human picornavirus pathogen CAV16, which reveals VP1 partly extruded from the capsid, poised to embed in the host membrane. Together with previous low-resolution results, we are able to propose a detailed hypothesis for the ordered egress of the internal proteins, using two distinct sets of channels through the capsid, and suggest a structural link to the condensed RNA within the particle, which may be involved in triggering RNA release.


Assuntos
Picornaviridae/química , Picornaviridae/fisiologia , Desenvelopamento do Vírus/fisiologia , Animais , Chlorocebus aethiops , Cristalografia por Raios X , Enterovirus , Humanos , Modelos Moleculares , Conformação Molecular , Células Vero , Proteínas Estruturais Virais/química , Vírion/metabolismo , Internalização do Vírus
11.
Nat Struct Mol Biol ; 19(4): 424-9, 2012 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-22388738

RESUMO

Enterovirus 71 (EV71) is a major agent of hand, foot and mouth disease in children that can cause severe central nervous system disease and death. No vaccine or antiviral therapy is available. High-resolution structural analysis of the mature virus and natural empty particles shows that the mature virus is structurally similar to other enteroviruses. In contrast, the empty particles are markedly expanded and resemble elusive enterovirus-uncoating intermediates not previously characterized in atomic detail. Hydrophobic pockets in the EV71 capsid are collapsed in this expanded particle, providing a detailed explanation of the mechanism for receptor-binding triggered virus uncoating. These structures provide a model for enterovirus uncoating in which the VP1 GH loop acts as an adaptor-sensor for cellular receptor attachment, converting heterologous inputs to a generic uncoating mechanism, highlighting new opportunities for therapeutic intervention.


Assuntos
Enterovirus Humano A/química , Infecções por Enterovirus/virologia , Vírion/química , Capsídeo/química , Proteínas do Capsídeo/química , Cristalografia por Raios X , Doença de Mão, Pé e Boca/virologia , Humanos , Modelos Moleculares
13.
Vaccine ; 23(15): 1788-92, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15734042

RESUMO

Cowpea mosaic virus (CPMV) is a bipartite RNA plant virus which has proved to be useful both for epitope presentation and as a polypeptide expression system. For epitope presentation, short antigenic sequences are expressed on the surface of the assembled virus. Chimaeric virus particles produced in this way can stimulate protective immunity in experimental animals. For polypeptide expression, we have created a vector in which foreign sequences can be inserted near the 3' end of RNA-2 and have successfully expressed a number of polypeptides in plant tissue. To extend the utility of the CPMV-based systems, we have recently developed a combined virus vector/transgenic expression system in which RNA-2 expressed from a transgene is replicated by RNA-1.


Assuntos
Formação de Anticorpos , Antígenos/biossíntese , Comovirus/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/genética , Epitopos , Humanos , Transgenes
14.
Virology ; 310(1): 50-63, 2003 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-12788630

RESUMO

Expression of foreign peptides on the surface of cowpea mosaic virus particles leads to the creation of chimaeras with a variety of phenotypes and yields. Two factors were shown to be particularly significant in determining the properties of a given chimaera: the length of the inserted sequence and its isoelectric point. The deleterious effect of high isoelectric point on the ability of chimeras to produce a systemic infection occurs irrespective of the site of insertion of the peptide. Ultrastructural analysis of tissue infected with chimaeras with different phenotypes showed that all produced particles with a tendency to aggregate, irrespective of the size or isoelectric point of the insert. Host range and transmission studies revealed that the expression of a foreign peptide did not (1) alter the virus host range, (2) increase the rate of transmission by beetles or through seed, or (3) change the insect vector specificity. These findings have implications for both the utility and the biosafety of Cowpea mosaic virus-based chimaeras.


Assuntos
Quimera , Comovirus/genética , Plantas/virologia , Sequência de Aminoácidos , Animais , Besouros/virologia , Ponto Isoelétrico , Dados de Sequência Molecular , Fenótipo , Sementes/virologia , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA