Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 239(6): 2353-2366, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391893

RESUMO

Telomerase, telomeric DNA and associated proteins together represent a complex, finely tuned and functionally conserved mechanism that ensures genome integrity by protecting and maintaining chromosome ends. Changes in its components can threaten an organism's viability. Nevertheless, molecular innovation in telomere maintenance has occurred multiple times during eukaryote evolution, giving rise to species/taxa with unusual telomeric DNA sequences, telomerase components or telomerase-independent telomere maintenance. The central component of telomere maintenance machinery is telomerase RNA (TR) as it templates telomere DNA synthesis, its mutation can change telomere DNA and disrupt its recognition by telomere proteins, thereby leading to collapse of their end-protective and telomerase recruitment functions. Using a combination of bioinformatic and experimental approaches, we examine a plausible scenario of evolutionary changes in TR underlying telomere transitions. We identified plants harbouring multiple TR paralogs whose template regions could support the synthesis of diverse telomeres. In our hypothesis, formation of unusual telomeres is associated with the occurrence of TR paralogs that can accumulate mutations, and through their functional redundancy, allow for the adaptive evolution of the other telomere components. Experimental analyses of telomeres in the examined plants demonstrate evolutionary telomere transitions corresponding to TR paralogs with diverse template regions.


Assuntos
Telomerase , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , RNA/genética , RNA/metabolismo , Plantas/metabolismo
2.
Plants (Basel) ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891386

RESUMO

This study investigated the thermal properties of potato and hop pollen for cryopreservation and subsequent cross-breeding. Phase transitions and frozen water content in selected pollen samples were measured using a differential scanning calorimeter (DSC). Unlike hop pollen, potato pollen showed high variability in thermal properties and water content. Three specific types of pollen samples based on their thermal characteristics and water content were distinguished by DSC in potato: (1) 'glassy', with a water content lower than 0.21 g water per g dry matter; (2) 'transient', with a water content between 0.27 and 0.34 g of water per g of dry matter; (3) 'frozen', with a water content higher than 0.34 g of water per g of dry matter. Only the 'glassy' pollen samples with a low water content showed suitable properties for its long-term storage using cryopreservation in potato and hops. Cryopreservation of pollen did not significantly reduce its viability, and cryopreserved pollen was successfully used to produce both potato and hop hybrids. The results indicate that cryopreservation is a feasible technique for the preservation and utilization of pollen of these crops in the breeding process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA