Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioconjug Chem ; 32(3): 615-625, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33656323

RESUMO

Human Interleukin 2 (IL-2) has already achieved impressive results as a therapeutic agent for cancer and autoimmune diseases. However, one of the limitations associated with the clinical application of IL-2 is its short half-life owing to rapid clearance by the kidneys. Modification with fatty acids, as an albumin noncovalent ligand with the advantage of deep penetration into tissues and high activity-to-mass ratio, is a commonly used approach to improve the half-life of native peptides and proteins. In this investigation, we attempted to extend the half-life of IL-2 through conjugation with a fatty acid using sortase A (srtA). We initially designed and optimized three IL-2 analogues with different peptide linkers between the C-terminus of IL-2 and srtA recognition sequence (LPETG). Among these, analogue A3 was validated as the optimal IL-2 analogue for further modification. Next, six fatty acid moieties with the same fatty acid and different hydrophilic spacers were conjugated to A3 through srtA. The six bioconjugates generated were screened for in vitro biological activity, among which bioconjugate B6 was identified as near-optimal to IL-2. Additionally, B6 could effectively bind albumin through the conjugated fatty acid, which contributed to a significant improvement in its pharmacokinetic properties in vivo. In summary, we have developed a novel IL-2 bioconjugate, B6, modified with fatty acids using srtA, which may effectively serve as a new-generation long-acting IL-2 immunotherapeutic agent.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Ácidos Graxos/química , Interleucina-2/farmacologia , Sequência de Aminoácidos , Meia-Vida , Humanos , Interleucina-2/química , Interleucina-2/farmacocinética
2.
Eur J Pharmacol ; 904: 174152, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33964292

RESUMO

Antigen-binding fragments (Fabs) are preferred alternatives to antibodies for medical application, whereas their short half-lives limit therapeutic effectiveness. Albumin binding domain (ABD) with high affinity for albumin possesses a great potential in enhancing in vivo performance of biotherapeutics. In this study, to mitigate the poor pharmacokinetics of adalimumab Fab targeting tumor necrosis factor-α (TNFα), an ABD fusion strategy was applied innovatively using GA3, ABD035, ABD094 and ABDCon with high affinities for albumin. The prokaryotic expression, bioactivities and half-lives of those novel Fab-ABD fusions were investigated in vitro and in vivo. All Fab-ABD fusions were successfully purified, and they retained similar TNFα-binding activities with the unmodified Fab control, also presented high affinities for human/mouse serum albumin (HSA/MSA). Additionally, the simultaneous binding of the difunctional Fab-ABD fusions to TNFα and albumin was verified, and ABD fused to Fab neither interfered with Fab-TNFα binding nor impaired the association between Fc fragment of IgG receptor and transporter (FcRn) and albumin. Based on the highest binding affinity for HSA and maximal yield, Fab-ABDCon was selected for further evaluation. Fab-ABDCon showed similar thermostability with the Fab control and robust stability in human and mouse plasma. Most notably, the pharmacokinetics of Fab-ABDCon in mice was significantly improved with a 22-fold longer plasma half-life (28.2 h) compared with that of Fab control (1.31 h), which have contributed to its satisfactory therapeutic efficacy in murine TNFα-induced hepatonecrosis model. Thus, Fab-ABDCon could be a promising long-acting candidate suitable for drug development targeting TNFα-mediated inflammatory disease.


Assuntos
Adalimumab/biossíntese , Adalimumab/farmacologia , Albuminas/metabolismo , Anti-Inflamatórios/farmacologia , Fragmentos Fab das Imunoglobulinas/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Albuminas/imunologia , Animais , Anti-Inflamatórios/imunologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Desenho de Fármacos , Feminino , Galactosamina/administração & dosagem , Galactosamina/toxicidade , Meia-Vida , Humanos , Concentração de Íons de Hidrogênio , Fragmentos Fab das Imunoglobulinas/farmacologia , Injeções Intraperitoneais , Camundongos Endogâmicos BALB C , Necrose/induzido quimicamente , Necrose/prevenção & controle , Ligação Proteica/genética , Domínios Proteicos/genética , Receptores Fc/imunologia , Receptores Fc/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Albumina Sérica Humana/imunologia , Albumina Sérica Humana/metabolismo , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA