Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536757

RESUMO

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Assuntos
Arbovírus , Hemípteros , Oryza , Tenuivirus , Animais , Arbovírus/genética , Hemípteros/fisiologia , Tenuivirus/fisiologia , Insetos Vetores , Antivirais/metabolismo , Oryza/genética , Doenças das Plantas
2.
J Virol ; : e0099724, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212930

RESUMO

Negevirus is a recently proposed taxon of arthropod-infecting virus, which is associated with plant viruses of two families (Virgaviridae and Kitaviridae). Nevertheless, the evolutionary history of negevirus-host and its relationship with plant viruses remain poorly understood. Endogenous nege-like viral elements (ENVEs) are ancient nege-like viral sequences integrated into the arthropod genomes, which can serve as the molecular fossil records of previous viral infection. In this study, 292 ENVEs were identified in 150 published arthropod genomes, revealing the evolutionary history of nege-like viruses and two related plant virus families. We discovered three novel and eight strains of nege-like viruses in 11 aphid species. Further analysis indicated that 10 ENVEs were detected in six aphid genomes, and they were divided into four types (ENVE1-ENVE4). Orthologous integration and phylogenetic analyses revealed that nege-like viruses had a history of infection of over 60 My and coexisted with aphid ancestors throughout the Cenozoic Era. Moreover, two nege-like viral proteins (CP and SP24) were highly homologous to those of plant viruses in the families Virgaviridae and Kitaviridae. CP- and SP24-derived ENVEs were widely integrated into numerous arthropod genomes. These results demonstrate that nege-like viruses have a long-term coexistence with arthropod hosts and plant viruses of the two families, Virgaviridae and Kitaviridae, which may have evolved from the nege-like virus ancestor through horizontal virus transfer events. These findings broaden our perspective on the history of viral infection in arthropods and the origins of plant viruses. IMPORTANCE: Although negevirus is phylogenetically related to plant virus, the evolutionary history of negevirus-host and its relationship with plant virus remain largely unknown. In this study, we used endogenous nege-like viral elements (ENVEs) as the molecular fossil records to investigate the history of nege-like viral infection in arthropod hosts and the evolution of two related plant virus families (Virgaviridae and Kitaviridae). Our results showed the infection of nege-like viruses for over 60 My during the arthropod evolution. ENVEs highly homologous to viral sequences in Virgaviridae and Kitaviridae were present in a wide range of arthropod genomes but were absent in plant genomes, indicating that plant viruses in these two families possibly evolved from the nege-like virus ancestor through cross-species horizontal virus transmission. Our findings provide a new perspective on the virus-host coevolution and the origins of plant viruses.

3.
PLoS Pathog ; 19(3): e1011266, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928081

RESUMO

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.


Assuntos
Tenuivirus , Viroses , Animais , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Tenuivirus/metabolismo , Insetos Vetores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
J Gen Virol ; 105(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38602389

RESUMO

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Assuntos
Hemípteros , Orthobunyavirus , Vírus de RNA , Animais , Feminino , Filogenia , Insetos , Vírus de RNA/genética
5.
Langmuir ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264622

RESUMO

Thermal interface materials play a pivotal role in efficiently transferring heat from heating devices to thermal management components, thereby reducing the risk of component degradation due to overheating. In this study, we propose a strategy for enhancing the out-of-plane thermal conductivity (TC) of composite materials by fabricating a three-dimensional (3D) thermal network within a polydimethylsiloxane (PDMS) matrix. Specifically, the composite material was designed to incorporate a dense thermal network comprising hexagonal boron nitride nanosheets (BNNSs) and nanodiamonds (NDs). The fabrication process commenced with the preparation of BNNSs through liquid-phase exfoliation, followed by the creation of a 3D BNNSs-NDs/polyimide aerogel thermal framework using a unidirectional solidification ice templating method and subsequent heat treatment. Vacuum impregnation and curing were then employed to finalize the production of the 3D BNNSs-NDs/PDMS composite material. Characterization analyses indicated that the addition of NDs filled the voids between BNNSs, leading to the densification of the thermal framework pore walls and the establishment of additional thermal pathways. Impressively, with concentrations of BNNSs and NDs of 17.99 and 7.71 wt %, respectively, the out-of-plane TC of the 3D BNNSs-NDs/PDMS composite material reached 1.623 W m-1 K-1, marking notable enhancements of 754.21% and 256.70% compared to those of pure PDMS and composites prepared via direct blending with randomly distributed BNNSs and NDs, respectively. Furthermore, the 3D BNNSs-NDs thermal framework improved the compressive strength and the dimensional stability of the composite material. Finite element simulations additionally confirmed the synergistic improvement of the TC achieved through the combination of BNNSs and NDs, demonstrating that the 3D BNNSs-NDs/PDMS composite material displayed superior heat conduction and a greater density of thermal pathways compared to those of its counterparts, including 3D BNNSs/PDMS and 3D NDs/PDMS composite materials. In summary, this work presents a strategy for enhancing the out-of-plane TC of polymer-based composite materials by incorporating vertically aligned thermal networks.

6.
Langmuir ; 40(23): 12059-12069, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38818697

RESUMO

The growing use of high-power and integrated electronic devices has created a need for thermal conductive adhesives (TCAs) with high thermal conductivity (TC) to manage heat dissipation at the interface. However, TCAs are often limited by contact thermal resistance at the interface between materials. In this study, we synthesized MXene@Ag composites through a direct in situ reduction process. The Ag nanoparticles (Ag NPs) generated by the reduction of the MXene interlayer and surface formed effective thermally conductive pathways with Ag flakes within an epoxy resin matrix. Various characterization analyses revealed that adding MXene@Ag composites at a concentration of 3 wt % resulted in a remarkable TC of 40.80 W/(m·K). This value is 8.77 times higher than that achieved with Ag flakes and 7.9 times higher than with MXene filler alone. The improved TC is attributed to the sintering of the in situ reduced Ag NPs during the curing process, which formed a connection between MXene (a highly conductive material) and the Ag flakes, thereby reducing contact thermal resistance. This reduction in contact thermal resistance significantly enhanced the TC of the thermal interface materials (TIMs). This study presents a novel approach for developing materials with exceptionally high TC, opening new possibilities for the design and fabrication of advanced thermal management systems.

7.
Materials (Basel) ; 17(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255613

RESUMO

Silver powder, as the primary component of solar silver paste, significantly influences various aspects of the paste's performance, including printing, sintering, and conductivity. This study reveals that, beyond the shape and size of the silver powders, their microstructure is a critical factor influencing the performance of both silver powders and silver pastes in solar cell applications. The growth process leads to the formation of either polycrystalline aggregated silver powder or crystal growth silver powder. Analyzing the performance characteristics of these different microstructures provides guidance for selecting silver powders for silver pastes at different sintering temperatures. Polycrystalline aggregated silver powder exhibits higher sintering activity, with a sintering initiation temperature around 450 °C. The resulting silver paste, sintered at 750 °C, demonstrates a low sheet resistance of 2.92 mΩ/sq and high adhesion of 2.13 N. This silver powder is suitable for formulating silver pastes with lower sintering temperatures. The solar cell electrode grid lines have a high aspect ratio of 0.37, showing poor uniformity. However, due to the high sintering activity of the silver powder, the glass layer dissolves and deposits more silver, resulting in excellent conductivity, a low contact resistance of the silver electrode, a low series resistance of the solar cell of 1.23 mΩ, and a high photoelectric conversion efficiency of 23.16%. Crystal growth silver powder exhibits the highest tap density of 5.52 g/cm3. The corresponding silver paste shows improved densification upon sintering, especially at 840 °C, yielding a sheet resistance of 2.56 mΩ/sq and adhesion of 3.05 N. This silver powder is suitable for formulating silver pastes with higher sintering temperatures. The solar cell electrode grid lines are uniform with the highest aspect ratio of 0.40, resulting in a smaller shading area, a high fill factor of 81.59%, and a slightly higher photoelectric conversion efficiency of 23.17% compared to the polycrystalline aggregated silver powder.

8.
RSC Adv ; 14(9): 6048-6057, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38370456

RESUMO

Environmental protection mandates have spurred the widespread adoption of lead-free glass in electronic material adhesion. Glass powder, crucial for solar silver paste, notably affects the ohmic contact at the Ag-Si interface of crystalline silicon solar cells. This study examines how TeO2 content influences the high-temperature flowability and wettability of lead-free Bi2O3-TeO2-based glass powder, alongside the interplay between the glass's thermal properties and interface contact. Additionally, it investigates the Bi2O3-TeO2 ratio's impact on current transmission through the interfacial glass layer. Experimental results show that the synthesized glass powder exhibits superior high-temperature flowability and wettability, with a low contact resistance of 1.5 mΩ cm2 in silver paste applications. This study also proposes an optimal approach for enhancing current transmission through the interfacial glass layer. Consequently, this glass powder is highly valuable for c-Si solar cell silver paste applications, offering novel insights into improving current transmission efficiency.

9.
Insects ; 15(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39194819

RESUMO

Herbivorous insects harbor a variety of insect-specific viruses (ISVs) some of which are considered to be valuable biological agents for potential applications in biological defense and control strategies. Leaf beetles with chewing mouthparts are particularly known for their capacity to disrupt plant tissue while feeding, often creating openings that can act as entry points for plant pathogens. In this study, we have identified two new negative-sense RNA viruses infecting the leaf beetle Aulacophora indica, an important member of the Chrysomelidae family. These recently discovered viruses belong to the viral families Nyamiviridae and Chuviridae and have been preliminarily named Aulacophora indica nyami-like virus 1 (AINlV1) and Aulacophora indica chu-like virus 1 (AIClV1), respectively. The complete genomic sequences of these viruses were obtained using rapid amplification of cDNA ends (RACE) techniques. Detailed analysis of their genomic structures has confirmed their similarity to other members within their respective families. Furthermore, analysis of virus-derived small interfering RNA (vsiRNA) demonstrated a high abundance and typical vsiRNA pattern of AINlV1 and AIClV1, offering substantial evidence to support their classification as ISVs. This research enhances our understanding of viral diversity within insects.

10.
J Integr Med ; 22(4): 493-502, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38853116

RESUMO

OBJECTIVE: Hepatolenticular degeneration (HLD) is an autosomal recessive disorder that manifests as multiorgan damage due to impaired copper (Cu) metabolism. Female patients with HLD often experience reproductive impairments. This study investigated the protective effect of berberine against ovarian damage in toxic-milk (TX) mice, a murine model for HLD. METHODS: Mice were categorized into control group, HLD TX group (HLD group), penicillamine (Cu chelator)-treated TX group and berberine-treated TX group. Body weight, ovary weight and the number of ovulated eggs were recorded. Follicular morphology and cellular ultrastructure were examined. Total iron, ferrous iron (Fe2+) and trivalent iron (Fe3+) levels, as well as malondialdehyde (MDA), glutathione (GSH) and oxidized glutathione (GSSG), were measured in the ovaries. Western blot analysis was used to analyze the expression of proteins related to ferroptosis and endoplasmic reticulum (ER) stress. RESULTS: Ovarian tissue damage was evident in the HLD group, with a significant increase in ferroptosis and ER stress compared to the control group. This damage was inhibited by treatment with penicillamine, a Cu chelator. Compared with the HLD group, berberine increased the number of ovulations, and improved ovarian morphology and ultrastructure. Further, we found that berberine reduced total iron, Fe2+, MDA and GSSG levels, elevated GSH levels, decreased the expression of the ferroptosis marker protein prostaglandin-endoperoxide synthase 2 (PTGS2), and increased glutathione peroxidase 4 (GPX4) expression. Furthermore, berberine inhibited the expression of ER stress-associated proteins mediated by the protein kinase RNA-like ER kinase (PERK) pathway. CONCLUSION: Ferroptosis and ER stress are involved in Cu-induced ovarian damage in TX mice. Berberine ameliorates ovarian damage in HLD TX mice by inhibiting ferroptosis and ER stress. Please cite this article as: Liu QZ, Han H, Fang XR, Wang LY, Zhao D, Yin MZ, Zhang N, Jiang PY, Ji ZH, Wu LM. Berberine alleviates ovarian tissue damage in mice with hepatolenticular degeneration by suppressing ferroptosis and endoplasmic reticulum stress. J Integr Med. 2024; 22(4): 494-503.


Assuntos
Berberina , Estresse do Retículo Endoplasmático , Ferroptose , Degeneração Hepatolenticular , Ovário , Animais , Feminino , Ferroptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Berberina/farmacologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/genética , Modelos Animais de Doenças , Cobre , Glutationa/metabolismo , Ferro/metabolismo , Malondialdeído/metabolismo
11.
Nat Commun ; 14(1): 737, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36759625

RESUMO

Salivary elicitors secreted by herbivorous insects can be perceived by host plants to trigger plant immunity. However, how insects secrete other salivary components to subsequently attenuate the elicitor-induced plant immunity remains poorly understood. Here, we study the small brown planthopper, Laodelphax striatellus salivary sheath protein LsSP1. Using Y2H, BiFC and LUC assays, we show that LsSP1 is secreted into host plants and binds to salivary sheath via mucin-like protein (LsMLP). Rice plants pre-infested with dsLsSP1-treated L. striatellus are less attractive to L. striatellus nymphs than those pre-infected with dsGFP-treated controls. Transgenic rice plants with LsSP1 overexpression rescue the insect feeding defects caused by a deficiency of LsSP1 secretion, consistent with the potential role of LsSP1 in manipulating plant defenses. Our results illustrate the importance of salivary sheath proteins in mediating the interactions between plants and herbivorous insects.


Assuntos
Hemípteros , Oryza , Animais , Oryza/genética , Hemípteros/genética , Herbivoria , Plantas Geneticamente Modificadas , Ninfa
12.
Nat Commun ; 14(1): 7264, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945658

RESUMO

Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.


Assuntos
Artrópodes , Hemípteros , Animais , Artrópodes/genética , Hemípteros/genética , Retroviridae
13.
NPJ Biofilms Microbiomes ; 7(1): 43, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986295

RESUMO

A large number of insect-specific viruses (ISVs) have recently been discovered, mostly from hematophagous insect vectors because of their medical importance, but little attention has been paid to important plant virus vectors such as the whitefly Bemisia tabaci, which exists as a complex of cryptic species. Public SRA datasets of B. tabaci and newly generated transcriptomes of three Chinese populations are here comprehensively investigated to characterize the whitefly viromes of different cryptic species. Twenty novel ISVs were confidently identified, mostly associated with a particular cryptic species while different cryptic species harbored one or more core ISVs. Microinjection experiments showed that some ISVs might cross-infect between the two invasive whitefly cryptic species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), but others appeared to have a more restricted host range, reflecting the possibility of distinct long-term coevolution of these ISVs and whitefly hosts. Moreover, analysis of the profiles of virus-derived small-interfering RNAs indicated that some of the ISVs can successfully replicate in whitefly and the antiviral RNAi pathway of B. tabaci is actively involved in response to ISV infections. Our study provides a comprehensive analysis of the RNA virome, the distinct relationships and cross-cryptic species infectivity of ISVs in an agriculturally important insect vector.


Assuntos
Hemípteros/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Viroma , Animais , Bases de Dados Genéticas , Especificidade de Hospedeiro , Insetos Vetores/virologia , Metagenoma , Metagenômica/métodos , Filogenia , RNA Viral
14.
Huan Jing Ke Xue ; 41(7): 3066-3075, 2020 Jul 08.
Artigo em Zh | MEDLINE | ID: mdl-32608878

RESUMO

Volatile organic compounds (VOCs) were collected at three environmental sampling sites in Yangquan and quantified by gas chromatography-mass selective detector/flame ionization detector(GC-MSD/FID). The VOC sources were identified by diagnostic ratios and positive matrix factorization (PMF), and environmental impact of VOCs on O3 and secondary organic aerosol (SOA) were evaluated. The results showed that the average VOC concentration was (82.1±22.7) µg·m-3, with alkanes being the most abundant group (51.8%), followed by aromatics (17.8%), alkenes (8.0%), and alkynes (3.8%). The diurnal variation of VOCs exhibited a bimodal trend, with twin peaks appearing at 08:00-10:00 and 18:00-20:00, falling to a valley at 12:00-14:00. The results for benzene/toluene (2.1±1.3) and isopentane/n-pentane (1.7±0.6) showed that the ambient VOCs may be influenced by coal combustion and vehicular emissions. Six sources were extracted by PMF:coal combustion (34.9%), vehicle emissions (18.2%), gasoline evaporation (15.2%), industrial emissions (13.6%), biogenic emissions (9.2%), and solvent usage (9.0%). The average concentration of ozone formation potential (OFP) was 156.6 µg·m-3, with the highest contribution from alkenes, while the average concentration of secondary organic aerosol formation potential (SOAp) was 68.7 µg·m-3, mainly from aromatics (93.4%). In summary, coal combustion was the most abundant source of VOCs, and accelerating the management of coal gangue and energy structure readjustment are the key points to address. Meanwhile, restricting the VOCs from vehicle emissions, gasoline evaporation, and industrial emissions is also required.

15.
Nat Mater ; 7(10): 790-4, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18776890

RESUMO

One abiding surprise in fullerene science is that I(h)-symmetric buckminsterfullerene C(60) (ref. 1) (I(h)-C(60) or (#1,812)C(60), the nomenclature specified by symmetry or by Fowler's spiral algorithm) remains the sole C(60) species experimentally available. Setting it apart from the other 1,811 topological isomers (isobuckminsterfullerenes) is its exclusive conformity with the isolated-pentagon rule, which states that stable fullerenes have isolated pentagons. Although gas-phase existence of isobuckminsterfullerenes has long been suspected, synthetic efforts have yet to yield successful results. Here, we report the realization of two isobuckminsterfullerenes by means of chlorination of the respective C(2v)- and C(s)-symmetric C(60) cages. These chlorinated species, (#1,809)C(60)Cl(8)(1) and (#1,804)C(60)Cl(12)(2), were isolated in experimentally useful yields. Structural characterization by crystallography unambiguously established the unique pentagon-pentagon ring fusions. These distinct structural features are directly responsible for the regioselectivity observed in subsequent substitution of chlorines, and also render these unprecedented derivatives of C(60) isomers important for resolving the long-standing puzzle of fullerene formation by the Stone-Wales transformation scheme.

16.
J Am Chem Soc ; 130(46): 15240-1, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18956866

RESUMO

A smaller fullerene C56 (#913) is stabilized, isolated, and crystallographically characterized as C56Cl10. The geometric parameters of C56Cl10 imply the otherwise unstable cage of C56 can be stabilized by chlorination through releasing its surface strains and maintaining fragmental aromaticity. An unexpected C Cl...ClC short contact, as well as the linear alignment with pearl-necklace-shaped, is revealed in C56Cl10 crystal.

17.
Sci Rep ; 7(1): 16467, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184063

RESUMO

Virion distribution and ultrastructural changes induced by the infection of maize or rice with four different reoviruses were examined. Rice black streaked dwarf virus (RBSDV, genus Fijivirus), Rice ragged stunt virus (RRSV, genus Oryzavirus), and Rice gall dwarf virus (RGDV, genus Phytoreovirus) were all phloem-limited and caused cellular hyperplasia in the phloem resulting in tumors or vein swelling and modifying the cellular arrangement of sieve elements (SEs). In contrast, virions of Rice dwarf virus (RDV, genus Phytoreovirus) were observed in both phloem and mesophyll and the virus did not cause hyperplasia of SEs. The three phloem-limited reoviruses (but not RDV) all induced more flexible gateways at the SE-SE interfaces, especially the non-sieve plate interfaces. These flexible gateways were also observed for the first time at the cellular interfaces between SE and phloem parenchyma (PP). In plants infected with any of the reoviruses, virus-like particles could be seen within the flexible gateways, suggesting that these gateways may serve as channels for the movement of plant reoviruses with their large virions between SEs or between SEs and PP. SE hyperplasia and the increase in flexible gateways may be a universal strategy for the movement of phloem-limited reoviruses.


Assuntos
Hiperplasia/patologia , Hiperplasia/virologia , Fenótipo , Floema/virologia , Doenças das Plantas/virologia , Reoviridae/fisiologia , Interações Hospedeiro-Patógeno , Oryza/ultraestrutura , Oryza/virologia , Floema/ultraestrutura , Tropismo Viral , Vírion/ultraestrutura , Zea mays/ultraestrutura , Zea mays/virologia
18.
Artigo em Zh | WPRIM | ID: wpr-753291

RESUMO

Objective To investigate the effect of ultrasound-guided erector spinae plane (ESP) block on early postoperative pain and stress response in patients undergoing thoracoscopic lobectomy. Methods Sixty American Society of Anesthesiologists statusⅠorⅡgrade patients who had underwent thoracoscopic lobectomy from June to December 2018 in Wenzhou People′s Hospital were selected. The patients were divided into combined group 1, combined group 2 and control group according to the random digits table method with 20 cases each. The patients in control group only received patient controlled intravenous anesthesia (PCIA) after surgery. While in combined group 1 and 2, unilateral ESP block was performed before skin cutoff or after surgery under the guidance of ultrasonography, respectively, to replenish PCIA administration. The mean arterial pressure (MAP), heart rate, plethysmography index (SPI), state entropy (SE) and reaction entropy (RE) before anesthesia induction, immediately after intubation, at the time of incision, and thoracoscopic cannulation, 30 min after surgery, and at the time of thoracoscopic cannula withdrawal were recorded. The visual analogue score (VAS) at rest and cough extubation immediately and 1, 6, 12, 24, 48 h after extubation were recorded. The compression number of analgesia pump, remedy number of sufentanil and incidence of adverse events 48 h after extubation were recorded. The levels of venous blood norepinephrine (NE), epinephrine (E) and cortisol immediately after surgery and 24 h after extubation were measured. Results Sixty patients completed the study. There were no statistical difference in intraoperative fluid volume, operation duration, MAP, heart rate, SPI, RE, SE, incidence of adverse events (nausea vomiting, urinary retention and itching) and remedy number of sufentanil (P>0.05). Compared with control group, the rest VAS from extubation immediately to 48 h after extubation and cough VAS from extubation immediately to 24 h after extubation in combined group 1 and 2 were significantly lower than those in control group, and there were statistical differences (P<0.05). The compression numbers of analgesia pump 1 to 24 h after extubation in combined group 1 and 2 were significantly lower than those in control group: 1 (0, 1) and 1 (0, 1) times vs. 3 (2, 4) times, 2 (1, 3) and 1 (0, 2) times vs. 5 (2, 7) times, 3 (1, 4) and 3 (2, 5) times vs. 6 (3, 7) times, 1 (0, 1) and 2 (1, 3) times vs. 4 (2, 6) times, 4 (2, 5) and 4 (2, 5) times vs. 6 (3, 8) times, and there were statistical differences (P<0.05). Immediately after operation ending, the NE, E and cortisol in combined group 1 were significantly lower than those in control group and combined group 2: (32.7 ± 7.3) ng/L vs. (88.7 ± 11.3) and (80.5 ± 13.4) ng/L, (44.5 ± 9.9) ng/L vs. (59.3 ± 10.2) and (55.6 ± 11.6) ng/L, (4.0 ± 2.6) mg/L vs. (25.4 ± 6.8) and (18.9 ± 5.3) mg/L, and there were statistical differences (P<0.05); there were no statistical differences between control group and combined group 2 (P>0.05). The NE, E and cortisol 24 h after extubation in combined group 1 and 2 were significantly lower than those in control group:(52.3 ± 11.8) and (56.5 ± 14.4) ng/L vs. (160.6 ± 21.7) ng/L, (52.2 ± 13.6) and (51.8 ± 10.5) ng/L vs. (90.3 ± 20.5) ng/L, (6.2 ± 2.1) and (9.4 ± 5.3) mg/L vs. (40.8 ± 9.2) mg/L, and there were statistical differences (P<0.05), there were no statistical differences between combined group 1 and combined group 2 (P>0.05). Conclusions The ultrasound-guided ESP block combined with PCIA can provide favorable postoperative analgesia for thoracic surgery, and ESP block before skin incision, but not after chest closing, can provide better effects in reducing stress response.

19.
Artigo em Zh | WPRIM | ID: wpr-695082

RESUMO

Purpose To investigate the effect of EPCR on the proliferation and migration, and to explore the molecular mechanism of EPCR affecting the tumor growth and metastasis in human breast cancer cell line MCF-7. Methods MCF-7 cell was transfected with EPCR siRNA and treated with anti-PAR-1 antibody. Then CCK-8 assay was performed to determine the proliferation of MCF-7 cell. Transwell migration assay was employed to determine the cell's migration. Cell-ELISA was used to detect the activation of PAR-1 on the membranes of MCF-7. Result After EPCR siRNA transfection, the proliferation and migration ability of the MCF-7 in the interference of EPCR gene group was significantly decreased compared with the negative control and untreated control group. After treated with anti-PAR-1 antibody, the proliferation and migration of ability of MCF-7 were decreased significantly compared with the negative control group and the untreated control group. Cell-ELISA assay indicated that the activation of PAR-1 in the cells surface of MCF-7 cell in the EPCR gene interference group was mitigated versus the negative control and untreated control group. Conclusion EPCR may promote the proliferation and migration of MCF-7 cell by activating PAR-1.

20.
Virus Res ; 159(1): 73-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21571013

RESUMO

Four novel double-stranded RNA segments were detected in a Verticillium dahliae Kleb. strain (V. dahliae isolate 0-21), a causal fungal agent of Verticillium wilt disease of cotton. Each dsRNA genome segment contains a single large open reading frame (ORF) that encodes a distinctive protein with modest levels of sequence similarities to the corresponding putative proteins in the genus Chrysovirus. These include an RNA-dependent RNA polymerase (RdRp), a coat protein, an undefined replication-related protein and an ovarian tumor domain peptidase. Phylogenetic analysis of the four putative proteins unanimously indicated that they are evolutionarily related to viruses in Chrysovirus. The 5'- and 3'-untranslated regions of the four dsRNAs share highly similar internal sequence and contain conserved sequence stretches of UGAUAAAAAA(/U)UG(/U)AAAAA- (in the 5'-UTR) and -UUUACUACU (in the 3'-UTR), indicating that they have a common virus origin. Indeed, isometric virus-like particles (VLPs) with a diameter of approximately 34nm were extracted from the fungal mycelia, and the four dsRNA segments were also detected in the virus-like particle (VLP) fraction. These results suggest that the mycovirus with four different dsRNA genome segments from the fungal isolate 0-21 is a new member of the genus Chrysovirus. We named the virus Verticillium dahliae chrysovirus 1 (VdCV1).


Assuntos
Genoma Viral , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Análise de Sequência de DNA , Verticillium/virologia , Análise por Conglomerados , Gossypium/microbiologia , Dados de Sequência Molecular , Micélio/virologia , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/microbiologia , Vírus de RNA/isolamento & purificação , Homologia de Sequência de Aminoácidos , Verticillium/isolamento & purificação , Proteínas Virais/genética , Vírion/isolamento & purificação , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA