RESUMO
Janus kinases (JAKs), a kind of non-receptor tyrosine kinases, the function has been implicated in the regulation of cell proliferation, differentiation and apoptosis, immune, inflammatory response and malignancies. Among them, JAK1 represents an essential target for modulating cytokines involved in inflammation and immune function. Rheumatoid arthritis, atopic dermatitis, ulcerative colitis and psoriatic arthritis are areas where approved JAK1 drugs have been applied for the treatment. In the review, we provided a brief introduction to JAK1 inhibitors in market and clinical trials. The structures of high active JAK1 compounds (IC50 ≤ 0.1 nM) were highlighted, with primary focus on structure-activity relationship and selectivity. Moreover, the druggability processes of approved drugs and high active compounds were analyzed. In addition, the issues involved in JAK1 compounds clinical application as well as strategies to surmount these challenges, were discussed.
Assuntos
Janus Quinase 1 , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Estrutura Molecular , Animais , Relação Dose-Resposta a DrogaRESUMO
Glaucatotones Aâ¯-â¯I, nine new guaiane-type sesquiterpenoids, along with two reported compounds, namely (1ß,5ß)-1-hydroxyguaia-4(15),11(13)-dieno-12,5-lactone (10) and pseudoguaianelactone C (11), were isolated from the roots of Lindera glauca. The structures and absolute configurations of these compounds were elucidated by extensive spectroscopic analyses, single-crystal X-ray diffraction, and comparison of experimental and calculated electronic circular dichroism (ECD) data. Structurally, glaucatotone A (1) is characterized as a dihomosesquiterpenoid with an unprecedented 5/5/7/6 ring system. A pair of enantiomers, (±)-glaucatotone B (2a/2b), represent the first rearranged norsesquiterpenoid with a (cyclopentylmethyl)cyclohexane skeleton. 3 is defined as a dinorsesquiterpenoid possessing a 5/7/5 ring system. 4-6 are three guaiane-type norsesquiterpenoids. In vitro bioactivity, 2a selectively inhibited Bcap-37 with IC50 value of 5.60⯵M, and 9 selectively inhibited Du-145 with IC50 value of 5.52⯵M. The anti-inflammatory activity of 1-9 were tested, and of these compounds, 1, 2a, 2b and 7 exhibited potent inhibitory effects.
Assuntos
Lindera , Sesquiterpenos , Estrutura Molecular , Lindera/química , Sesquiterpenos de Guaiano/farmacologia , Anti-Inflamatórios/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/químicaRESUMO
Atractylodes macrocephala Koidz (AMK) is a perennial herb from the plant family Asteraceae (formerly Compositae). This herb is mainly distributed in mountainous wetlands in Zhejiang, Sichuan, Yunnan, and Hunan provinces of China. Its medicinal production and quality, however, are severely impacted by root rot disease. In our previous study, endophytic bacterium designated AM201 exerted a high biocontrol effect on the root rot disease of AMK. However, the molecular mechanisms underlying this effect remain unclear. In this study, the identity of strain AM201 as Rhodococcus sp. was determined through analysis of its morphology, physiological and biochemical characteristics, as well as 16S rDNA sequencing. Subsequently, we performed transcriptome sequencing and bioinformatics analysis to compare and analyze the transcriptome profiles of root tissues from two groups: AM201 (AMK seedlings inoculated with Fusarium solani [FS] and AM201) and FS (AMK seedlings inoculated with FS alone). We also conducted morphological, physiological, biochemical, and molecular identification analyses for the AM201 strain. We obtained 1,560 differentially expressed genes, including 187 upregulated genes and 1,373 downregulated genes. We screened six key genes (GOLS2, CIPK25, ABI2, egID, PG1, and pgxB) involved in the resistance of AM201 against AMK root rot disease. These genes play a critical role in reactive oxygen species (ROS) clearance, Ca2+ signal transduction, abscisic acid signal inhibition, plant root growth, and plant cell wall defense. The strain AM201 was identified as Rhodococcus sp. based on its morphological characteristics, physiological and biochemical properties, and 16S rDNA sequencing results. The findings of this study could enable to prevent and control root rot disease in AMK and could offer theoretical guidance for the agricultural production of other medicinal herbs.
Assuntos
Atractylodes , Endófitos , Perfilação da Expressão Gênica , Doenças das Plantas , Raízes de Plantas , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Rhodococcus/fisiologia , Atractylodes/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Endófitos/genética , Endófitos/metabolismo , Endófitos/classificação , Endófitos/fisiologia , Endófitos/isolamento & purificação , Transcriptoma , Fusarium/genética , Fusarium/fisiologia , China , RNA Ribossômico 16S/genéticaRESUMO
This study aimed to investigate the therapeutic effects of Morinda officinalis iridoid glycosides(MOIG) on paw edema and bone loss of rheumatoid arthritis(RA) rats, and analyze its potential mechanism based on ultra-high performance liguid chromatography-guadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS) serum metabolomics. RA rats were established by injecting bovin type â ¡ collagen. The collagen-induced arthritis(CIA) rats were administered drug by gavage for 8 weeks, the arthritic score were used to evaluate the severity of paw edem, serum bone metabolism biochemical parameters were measured by ELISA kits, Masson staining was used to observe the bone microstructure of the femur in CIA rats. UPLC-Q-TOF-MS was used to analyze the alteration of serum metabolite of CIA rats, principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were used to screen the potential biomarkers, KEGG database analysis were used to construct related metabolic pathways. The results demonstrated that the arthritic score, serum levels of IL-6 and parameters related with bone metabolism including OCN, CTX-â , DPD and TRAP were significantly increased, and the ratio of OPG and RANKL was significantly decreased, the microstructure of bone tissue and cartilage were destructed in CIA rats, while MOIG treatments could significantly reduce arthritis score, mitigate the paw edema, reverse the changes of serum biochemical indicators related with bone metabolism, and improve the microstructure of bone tissue and cartilage of CIA rats. The non-targeted metabolomics results showed that 24 altered metabolites were identified in serum of CIA rats; compared with normal group, 13 significantly altered metabolites related to RA were identified in serum of CIA rats, mainly involving alanine, aspartate and glutamate metabolism; compared with CIA model group, MOIG treatment reversed the alteration of 15 differential metabolites, mainly involving into alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism, valine, leucine and isoleucine biosynthesis. Therefore, MOIG significantly alleviated paw edema, improved the destruction of microstructure of bone and cartilage in CIA rats maybe through involving into the regulation of amino acid metabolism.
Assuntos
Artrite Reumatoide , Morinda , Ratos , Animais , Glicosídeos Iridoides/química , Morinda/química , Cromatografia Líquida de Alta Pressão , Ácido Aspártico , Metabolômica , Artrite Reumatoide/tratamento farmacológico , Edema , Alanina/uso terapêutico , Glutamatos/uso terapêutico , BiomarcadoresRESUMO
BACKGROUND: Ophiopogon japonicus, mainly planted in Sichuan (CMD) and Zhejiang (ZMD) province in China, has a lengthy cultivation history. During the long period of domestication, the genetic diversity of cultivated O. japonicus has substantially declined, which will affect the population continuity and evolutionary potential of this species. Therefore, it is necessary to clarify the phylogeography of cultivated O. japonicus to establish a theoretical basis for the utilization and conservation of the genetic resources of O. japonicus. RESULT: The genetic diversity and population structure of 266 O. japonicus individual plants from 23 sampling sites were analyzed based on 4 chloroplast DNA sequences (atpB-rbcL, rpl16, psbA-trnH and rpl20-5'rps12) to identify the effects of domestication on genetic diversity of cultivars and determine their geographic origins. The results showed that cultivated O. japonicus and wild O. japonicus had 4 and 15 haplotypes respectively. The genetic diversity of two cultivars (Hd = 0.35700, π = 0.06667) was much lower than that of the wild populations (Hd = 0.76200, π = 0.20378), and the level of genetic diversity in CMD (Hd = 0.01900, π = 0.00125) was lower than that in ZMD (Hd = 0.06900, π = 0.01096). There was significant difference in genetic differentiation between the cultivated and the wild (FST = 0.82044), especially between the two cultivars (FST = 0.98254). This species showed a pronounced phylogeographical structure (NST > GST, P < 0.05). The phylogenetic tree showed that the genetic difference between CMD and ZMD was not enough to distinguish the cultivars between the two producing areas by using O. amblyphyllus Wang et Dai as an outgroup. In addition, both CMD and ZMD have a closer relationship with wild populations in Sichuan than that in Zhejiang. The results of the TCS network and species distribution model suggested that the wild population TQ located in Sichuan province could serve as the ancestor of cultivated O. japonicus, which was supported by RASP analysis. CONCLUSION: These results suggest that cultivated O. japonicus has experienced dramatic loss of genetic diversity under anthropogenic influence. The genetic differentiation between CMD and ZMD is likely to be influenced by founder effect and strong artificial selection for plant traits. It appears that wild populations in Sichuan area are involved in the origin of not only CMD but also ZMD. In addition, we also raise some suggestions for planning scientific strategies for resource conservation of O. japonicus based on its genetic diversity and population structure.
Assuntos
DNA de Cloroplastos , Ophiopogon , DNA de Cloroplastos/genética , Filogeografia , Filogenia , Ophiopogon/química , Ophiopogon/genética , Haplótipos/genética , Variação GenéticaRESUMO
Few studies have examined the association of factors associated with soil fertility and composition with the structure of microbial communities in the rhizosphere and endosphere. Hence, this study aimed to explore the effects of geographical differences on fungal communities in the roots of Scrophularia ningpoensis and the relationship between the fungal communities and secondary metabolic components in the host plant. We found that there was greater diversity in the fungal communities of the rhizosphere compartment than in endosphere communities. Ascomycota and Basidiomycota were dominant among the endosphere fungi, whereas Mortierellomycota was distributed in the rhizosphere. The composition of bulk soil obtained from different producing areas was significantly different, and the correlation between the rhizospheric and physicochemical compartments of the soil was higher than that observed with the endophytic compartment. Redundancy analysis and canonical correspondence analysis of the rhizospheric and endophytic samples revealed that the organic matter, total organic carbon, total nitrogen, and Hg levels were adequately correlated with the composition of rhizospheric and endophytic fungal communities. Multiple linear regression analyses facilitated the identification of potentially beneficial fungi whose abundance was correlated with levels of secondary metabolites, such as harpagide and harpagoside. These fungi could potentially provide valuable information regarding the use of S. ningpoensis in the medicinal plant industry.
Assuntos
Mercúrio , Microbiota , Micobioma , Scrophularia , SoloRESUMO
Endophytic fungi play important roles in regulating plant growth and development and usually used as a promising strategy to enhance the biosynthesis of host valuable secondary metabolite, but the underlying growth-promoting mechanisms are only partly understood. In this study, the wild-type Arabidopsis thaliana seedlings co-cultured with fungal endophyte Epichloë bromicola showed auxin (IAA)-stimulated phenotypes, and the growth-promoting effects caused by E. bromicola were further verified by the experiments of spatially separated co-culture and fungal extract treatment. IAA was detected and identified in the extract of E. bromicola culture by LC-HRMS/MS, whereas 2,3-butanediol was confirmed to be the predominant volatile active compound in the diethyl ether and ethyl acetate extracts by GC-MS. Further study observed that IAA-related genes including synthesis key enzyme genes (CYP79B2, CYP79B3, NIT1, TAA1 and YUCCA1) and controlling polar transport genes (AUX1, BIG, EIR1, AXR3 and ARF1), were highly expressed at different periods after E. bromicola inoculation. More importantly, the introduction of fungal endophyte E. bromicola could effectively promote the growth and accumulation of coixol in Coix under soil conditions. Our study showed that endophytic fungus E. bromicola might be considered as a potential inoculant for improving medicinal plant growth.
Assuntos
Coix , Epichloe , Coix/microbiologia , Epichloe/genéticaRESUMO
Eucommia ulmoides Oliver is a dioecious plant, which plays an important role in traditional Chinese medicine. However, there has not yet been any research on male and female E. ulmoides. The UPLC fingerprints and OPLS-DA approach were able to quickly and easily identify and quantify E. ulmoides and differentiate between the male and female fingerprints. In this study, we optimized the UPLC conditions and analyzed them to investigate fingerprints of twenty-four extracts of Eucommiae Cortex (EC) and twenty-four extracts of Eucommiae Folium (EF) under optimal conditions. It was demonstrated that thirteen and twelve substances were possible chemical markers for EC and EF male and female discrimination and that the level of these markers - chlorogenic acid and protocatechuic acid - was many times higher in male than in female. This approach offered a reference for quality control and precise treatment of male and female E. ulmoides in the clinic.
Assuntos
Medicamentos de Ervas Chinesas , Eucommiaceae , Medicamentos de Ervas Chinesas/química , Eucommiaceae/química , Medicina Tradicional Chinesa , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodosRESUMO
Traditional Chinese medicine Scrophulariae Radix, which is also called Yuan Shen, black Shen, is the dried root of Scrophularia ningpoensis of the Scrophulariaceae family. Research has indicated that the chemical constituents of Scrophulariae Radix mainly include terpenoids, phenylpropanoids, organic acids, volatile oils, steroids, sugars, flavonoids, alkaloids and phenols, among which iridoids and phenylpropanoids were the main active constituents. It has been reported that extracts of Scrophulariae Radix or its active substances have anti-inflammatory, antioxidant, hepatoprotective, anti-tumor, anti-fatigue, uric acid-lowering, anti-depression, myocardial cell-protective and other pharmacological activities, and can regulate cardiovascular system, central nervous system and immune system. This paper reviewed the present research achievements of Scrophulariae Radix in chemical constituents, pharmacological activities, processing methods, toxicity and other aspects, and the clinical application of Scrophulariae Radix in ancient and modern times was illustrated. This paper aimed to provide reference for further research of Scrophulariae Radix and facilitated its clinical application.
Assuntos
Medicamentos de Ervas Chinesas , Scrophularia , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão , Raízes de Plantas/química , Scrophularia/químicaRESUMO
Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems. Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects. This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.
Assuntos
Moduladores de Receptores de Canabinoides , Canabinoides , Moduladores de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Receptores de Canabinoides , Canabinoides/farmacologia , Anti-Inflamatórios/farmacologiaRESUMO
Diabetic osteoporosis (DOP) is a disorder of bone metabolism induced by multiple mechanisms. Previous studies have revealed that microRNAs (miRNAs) play crucial roles in bone metabolism. MiRNA-144-5p has been proven to participate in the regulation of osteoblast activities; however, its specific mechanism in DOP has not been elucidated. This study investigated whether high glucose (HG) inhibited osteoblasts by regulating miRNA-144-5p. Our results showed that HG inhibited bone formation not only in vivo but also in vitro. We observed that HG severely hindered the migration, proliferation and mineralization of osteoblasts, while miRNA-144-5p was upregulated by way of the cell counting kit-8 assay, wound healing assay, alkaline phosphatase (ALP) activity assay and alizarin red staining. Double luciferase reporter experiments showed that miRNA-144-5p directly targeted insulin receptor substrate 1 (IRS1). The IRS1/AKT signaling pathway is closely related to osteoblasts' migration, proliferation, and mineralization. Silencing miRNA-144-5p promoted the mRNA, and protein expression of IRS1, thereby letting the expression of total AKT down, and then preventing phosphorylation of AKT into the nucleus to regulate migration, proliferation, and mineralization genes of osteoblasts. In conclusion, this study indicated that HG regulated the migration, proliferation, and mineralization of osteoblasts via the miRNA-144-5p/IRS1/AKT axis, which suggested a possible mechanism for DOP pathology.
Assuntos
Diabetes Mellitus , MicroRNAs , Osteoporose , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/genética , Osteoblastos/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Diabetes Mellitus/metabolismoRESUMO
Salvia miltiorrhiza Bunge. is commonly used to treat vascular diseases because of its activity ingredients, phenolic acids, and tanshinones. Polysaccharide fraction (PSF) extracted from Trichoderma atroviride D16 could promote tanshinone accumulation in S. miltiorrhiza hairy roots. Transcriptome sequencing was conducted to describe the global gene expression of PSF-treatment hairy roots, and data analyses showed enzymes of tanshinone biosynthetic pathways were up-regulated, and genes associated to signal molecules and transcription factors were responsive. Endogenous H2O2, abscisic acid, and nitric oxide contents were measured after PSF treatment, while tanshinone accumulations were measured with treatment of exogenous H2O2 or H2O2 inhibitor on PSF-treatment S. miltiorrhiza hairy roots. The results showed H2O2 was important in tanshinone biosynthesis caused by PSF and nitric oxide might be the downstream molecules of H2O2. Taken together, the study indicates that D16 PSF enhances the accumulation of tanshinones through enzymes of tanshinone biosynthetic pathways, signal molecules, and transcription factors.
Assuntos
Salvia miltiorrhiza , Abietanos , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Hypocreales , Óxido Nítrico/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , TranscriptomaRESUMO
As cannabinoid CB2 receptors (CB2R) possess various pharmacological effects-including anti-epilepsy, analgesia, anti-inflammation, anti-fibrosis, and regulation of bone metabolism-without the psychoactive side effects induced by cannabinoid CB1R activation, they have become the focus of research and development of new target drugs in recent years. The present study was intended to (1) establish a double luciferase screening system for a CB2R modulator; (2) validate the agonistic activities of the screened compounds on CB2R by determining cAMP accumulation using HEK293 cells that are stably expressing CB2R; (3) predict the binding affinity between ligands and CB2 receptors and characterize the binding modes using molecular docking; (4) analyze the CB2 receptors-ligand complex stability, conformational behavior, and interaction using molecular dynamics; and (5) evaluate the regulatory effects of the screened compounds on bone metabolism in osteoblasts and osteoclasts. The results demonstrated that the screening system had good stability and was able to screen cannabinoid CB2R modulators from botanical compounds. Altogether, nine CB2R agonists were identified by screening from 69 botanical compounds, and these CB2R agonists exhibited remarkable inhibitory effects on cAMP accumulation and good affinity to CB2R, as evidenced by the molecular docking and molecular dynamics. Five of the nine CB2R agonists could stimulate osteoblastic bone formation and inhibit osteoclastic bone resorption. All these findings may provide useful clues for the development of novel anti-osteoporotic drugs and help elucidate the mechanism underlying the biological activities of CB2R agonists identified from the botanical materials.
Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Receptor CB2 de Canabinoide/agonistas , Animais , Anti-Inflamatórios/farmacologia , Agonistas de Receptores de Canabinoides/química , Moduladores de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , China , Células HEK293 , Humanos , Ligantes , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Células RAW 264.7 , Receptor CB2 de Canabinoide/metabolismoRESUMO
The endophytic bacterial community and their diversity are closely related to the host's growth and development. This paper explores the culturable endophytic bacteria in the stems, leaves, roots and rhizomes of Atractylodes macrocephala (AM) of four localities (Yuqian, Wenxian, Pan'an and Pingjiang) and the potential correlation between the bacteria and plant bioactive compounds. A total of 118 endophytic bacteria belonging to 3 phyla, 5 classes, 11 orders, 26 families and 48 genera were isolated and identified from the four AM tissues. Among them, Bacillus was the dominant genus. In AM, the tissue type and locality influenced the endophytic bacterial community. Approximately 29.7 and 28.8% of the endophytic bacteria exhibited tissue specificity and geographic specificity, respectively. Furthermore, high-performance liquid chromatography revealed that the sesquiterpenoid (atractylenolide I, atractylenolide â ¡ and atractylon) content was more in the rhizomes of Wenxian than in those of Pingjiang, Yuqian and Pan'an. The multiple linear regression was used to screen the bacterial strains related to the bioactive compounds of AM. The relative frequency of Microbacterium positively correlated with atractylenolide I and atractylon content in AM but negatively correlated with atractylenolide â ¡ content. The study also provides a theoretical framework for future research on endophytic bacteria as alternative sources of secondary plant metabolites.
Assuntos
Atractylodes , Atractylodes/química , Bactérias/genética , Endófitos , Humanos , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologiaRESUMO
The present study aimed to provide the protection strategies for wild germplasm resources of original plants of Viticis Fructus and a theoretical basis for the sustainable use of Viticis Fructus. The genetic diversity and genetic structures of the 232 indivi-duals in 19 populations of Vitex rotundifolia and V. trifolia were analyzed by eight SSR markers with tools such as Popgene32, GenAlex 6.502, and STRUCTURE. Bottleneck effect was detected for the population with more than 10 individuals. The results indicated that 42 and 26 alleles were detected from the populations of V. rotundifolia and V. trifolia, respectively, with average expected heterozygo-sities of 0.448 6 and 0.583 9, which are indicative of low genetic diversity. AMOVA revealed the obvious genetic variation of V. rotundifolia and V. trifolia within population(84.43%, P<0.01; 60.37%, P<0.01). Furthermore, in eight SSR loci, six from V. rotundifolia populations and two from V. trifolia populations failed to meet Hardy-Weinberg equilibrium expectations(P<0.05), which confirmed that the populations experienced bottleneck effect. As assessed by Mantel test, geographical distance posed slight impacts on the genetic variation between the populations of V. rotundifolia and V. trifolia. Principal component analysis(PCA) and STRUCTURE analysis demonstrated evident introgression of genes among various populations. The original plants of Viticis Fructus were confirmed low in genetic diversity and genetic differentiation level. Therefore, the protection of wild resources of original plants of Viticis Fructus should be strengthened to ensure its sustainable use.
Assuntos
Variação Genética , Vitex , Alelos , Frutas/genética , Geografia , Repetições de Microssatélites , Vitex/genéticaRESUMO
Methotrexate(MTX) is a commonly used antimetabolite, which can be used in the treatment of a variety of diseases. However, hepatotoxicity in the use of MTX severely limits its clinical use. Therefore, how to prevent and treat hepatotoxicity of MTX has become an urgent clinical problem. This paper summarizes and analyzes relevant literatures on the prevention and treatment of hepa-totoxicity caused by MTX with traditional Chinese medicines and natural medicines in recent years. MTX-induced hepatotoxicity mechanisms include folate pathway, oxidative stress damage and adenosine pathway, of which oxidative stress theory is the main research direction. A total of 14 kinds of traditional Chinese medicine and natural medicine extracts including white peony root, and 21 kinds of natural monomer compounds, including berberine, play an anti-MTX-induced hepatotoxic effect by resisting oxidative stress, inhibiting inflammation and regulating signal pathways. According to current studies on the prevention and treatment of hepatotoxicity induced by MTX with traditional Chinese medicines and natural medicines, there are insufficiencies, such as partial and superficial mechanism studies, inadequate combination of experimental research and clinical practice, non-standard experimental design and lack of application of advanced technologies and methods. This paper systematically reviewed the effects and mechanisms of traditional Chinese medicines and natural medicines against hepatotoxicity induced by MTX and defined current studies and deficiencies, in the expectation of proposing new study strategies and directions and providing scientific basis for rational clinical use of MTX and development of new drugs against MTX hepatotoxicity.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Humanos , Fígado/metabolismo , Medicina Tradicional Chinesa , Metotrexato/toxicidade , Estresse OxidativoRESUMO
Cannabinoid receptor type 2( CB2 R),a member of the G protein-coupled receptor( GPCR) superfamily,has a variety of biological activities,such as regulating pain response,resisting inflammation and fibrosis,and mediating bone metabolism. Some CB2 R regulators exhibit a good regulatory effect on bone metabolism. Cannabinoids in Cannabis sativa can cause psychoactive effects despite various pharmacological actions they exerted by targeting CB2 R. Therefore,it is of great significance to discover CB2 R regulators in non-Cannabis plants for finding new lead compounds without psychoactive effects and elucidating the action mechanism of plant drugs. The present study clarifies the discovery,structure,and physiological functions of CB2 R,especially its regulatory effects on bone metabolism,summarized CB2 R regulators extracted from non-Cannabis plants,and systematically analyzes the regulatory effects of CB2 R regulators on bone metabolism in animals,osteoblasts,and osteoclasts,to provide a scientific basis for the discovery of new CB2 R regulators and the development of anti-osteoporotic drugs.
Assuntos
Canabinoides , Cannabis , Animais , Canabinoides/farmacologia , Osteoblastos , Osteoclastos , Receptores de CanabinoidesRESUMO
Rhein, an anthraquinone extracted from rhubarb, is used in traditional Chinese medicine for diuresis, diarrhoea, inflammation, and immune regulation. Atezolizumab, a programmed cell death ligand 1 monoclonal antibody, is mainly used to treat bladder cancer and non-small cell lung cancer unresponsive to chemotherapy. We explored the effects of rhein and atezolizumab in combination on breast cancer. Mice with established 4T1 breast cancer xenografts were administered rhein (10â¯mg/kg) and atezolizumab (10â¯mg/kg), alone and in combination, and the effects on tumour growth were evaluated. The proportion of CD8+ T cells in the spleen and tumour tissue, the levels of TNF-α, and interleukin-6 in serum as well as the mRNA levels of apoptotic factors (caspase-3, caspase-8, caspase-9, and Bax/Bcl-2) were also evaluated. All of the treatment groups had inhibitory effects on the xenograft tumour growth, with results that were significantly different from those in the control group. In addition, the proportion of CD8+ T cells in the spleen and tumour was significantly increased in the combination therapy group and was significantly different from the other treatment groups. The serum levels of TNF-α and IL-6 were significantly increased in the rhein and combination therapy groups. Finally, the levels of various apoptotic factors in tumour tissues were significantly higher in the combination treatment group than those in the other groups. Administration of rhein, atezolizumab, or their combination all had therapeutic effects on 4T1 breast cancer xenografts in mice, with the combination treatment having stronger effects.
Assuntos
Antraquinonas/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Inibidores de Caspase/administração & dosagem , Caspases/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Rheum/química , Animais , Antraquinonas/química , Inibidores de Caspase/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Inibidores Enzimáticos/química , Feminino , Xenoenxertos , Humanos , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Background & objectives: The nature of adaptable change of B-cell lymphoma-2 (BCL-2) and/or Bcl2-associated X protein (BAX) gene expression in the human peripheral blood mononuclear cells (PBMCs) irradiated by radioiodine in thyroid diseases therapy is not fully understood. In this study, the alternation of apoptotic gene expression was evaluated while the PBMCs collected from healthy volunteers were irradiated by the radioiodine-131 (131I). Methods: Fasting blood samples were obtained from healthy volunteers. PBMCs from group 0 to 6 were incubated and exposed to different doses of 131I in cell suspension for 6, 12, 24 and 48 h. The apoptosis rates and expression of BCL-2 and BAX genes of PBMCs were examined. Results: The apoptosis rate in the human PBMCs was gradually enhanced after six hour irradiation. The values of BCL-2 and BAX gene expression in groups 1-6 were higher than in group 0 within 6 h of irradiation, and then, these were decreased gradually from 6 to 12 h. BCL: -2 gene expression increased in groups 1-3 after 12 h irradiation, but there was no difference in groups 4-6. The ratio of BCL-2/BAX gene expression among groups 4-6 gradually decreased during the period from 6 to 12 h, and it was significantly lower than in the group 0 at 12, 24 and 48 h. Interpretation & conclusions: The expression of BCL-2 and BAX genes was initially upregulated following irradiation. Later, the balance of BCL-2/BAX genes expression was adjusted, and then, PBMCs underwent apoptosis at higher doses of radiation.
Assuntos
Apoptose/efeitos da radiação , Leucócitos Mononucleares/efeitos da radiação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética , Apoptose/genética , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Radioisótopos do Iodo/efeitos adversos , Leucócitos Mononucleares/metabolismo , Radiação , Doses de RadiaçãoRESUMO
Rehmanniae Radix Praeparata (RR, named as Shudihuang in traditional Chinese medicine), the steamed roots of Rehmannia glutinosa Libosch (Scrophulariaceae), has been demonstrated to have anti-diabetic and anti-osteoporotic activities. This study aimed to explore the protective effect and underlying mechanism of RR on diabetes-induced bone loss. It was found that RR regulated the alkaline phosphatase activity and osteocalcin level, enhanced bone mineral density, and improved the bone microarchitecture in diabetic rats. The catalpol (CAT), acteoside (ACT), and echinacoside (ECH) from RR increased the proliferation and differentiation of osteoblastic MC3T3-E1 cells injured by high glucose and promoted the production of IGF-1 and expression of related proteins in BMP and IGF-1/PI3K/mammalian target of rapamycin complex 1 (mTOR) signaling pathways. The verifying tests of inhibitors of BMP pathway (noggin) and IGF-1/PI3K/mTOR pathway (picropodophyllin) and molecular docking of IGF-1R further indicated that CAT, ACT, and ECH extracted from RR enhanced bone formation by regulating IGF-1/PI3K/mTOR signaling pathways. These findings suggest that RR may prove to be a promising candidate drug for the prevention and treatment of diabetes-induced osteoporosis.