Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Gene Ther ; 34(3-4): 150-161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585858

RESUMO

Solid cancers remain a major health challenge in terms of research, not only due to their structure and organization but also in the molecular and genetic variations present between tumors as well as within the same tumor. When adding on the tumor microenvironment with cancer-associated cells, vasculature, and the body's immune response (or lack of), the weapons used to tackle this disease must also be diverse and intricate. Developing gene-based therapies against tumors contributes to the diverse lines of attack already established for cancers and can potentially overcome certain obstacles encountered with these strategies, the lack of tumor selectivity with chemotherapies, for example. Given the high mortality and relapse rate associated with pancreatic cancer, novel treatments, including gene therapy, are actively being investigated. Even though no gene therapy for pancreatic cancer is currently on the market, a significant amount of clinical trials are underway, especially in active and recruiting or recently completed phases.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Terapia Genética , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Hum Gene Ther ; 32(3-4): 166-177, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33504260

RESUMO

Oncolytic viruses (OVs) are novel cancer gene therapies that are moving toward the forefront of modern medicines. However, their full therapeutic potential is hindered by the lack of convenient and reliable strategies to visualize and quantify OV growth kinetics and therapeutic efficacy in live cells. In this study, we present an innovative imaging approach for single-cell real-time analysis of OV replication and efficacy in cancer cells. We selected SG33 as a prototypic new OV that derives from wild-type Myxoma virus (MYXV). Lausanne Toulouse 1 (T1) was used as control. We equipped SG33 and T1 genomes with the ANCHOR system and infected a panel of cell lines. The ANCHOR system is composed of a fusion protein (OR-GFP) that specifically binds to a short nonrepetitive DNA target sequence (ANCH) and spreads onto neighboring sequences by protein oligomerization. Its accumulation on the tagged viral DNA results in the creation of fluorescent foci. We found that (1) SG33 and T1-ANCHOR DNA can be readily detected and quantified by live imaging, (2) both OVs generate perinuclear replication foci after infection clustering into horse-shoe shape replication centers, and (3) SG33 replicates to higher levels as compared with T1. Lastly, as a translational proof of concept, we benchmarked SG33 replication and oncolytic efficacy in primary cancer cells derived from pancreatic adenocarcinoma (PDAC) both at the population and at the single-cell levels. In vivo, SG33 significantly replicates in experimental tumors to inhibit tumor growth. Collectively, we provide herein for the first time a novel strategy to quantify each step of OV infection in live cells and in real time by tracking viral DNA and provide first evidence of theranostic strategies for PDAC patients. Thus, this approach has the potential to rationalize the use of OVs for the benefit of patients with incurable diseases.


Assuntos
Adenocarcinoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Humanos , Vírus Oncolíticos/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA