Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Drug Test Anal ; 14(3): 450-461, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35048551

RESUMO

The established approaches of suspect and nontarget screening (NTS) using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) are usually applied in the field of environmental and bioanalytical analysis. Herein, these approaches were employed on a forensic-toxicological application by analyzing different production waste samples from controlled amphetamine synthesis via Leuckart route to evaluate the suitability of this methodology for identification of route-specific organic substances in such waste samples. For analysis, two complementary LC techniques were used to cover a broad polarity spectrum. After data processing and peak picking using the enviMass software and further manual data restriction, 17 features were tentatively identified as suspects, three of which were subsequently identified with reference substances. All suspects had been previously identified in studies, in which gas chromatography-mass spectrometry (GC-MS) was successfully applied for synthesis marker assessment in waste and amphetamine samples. Remaining features with high signal intensity and assigned sum formula were selected for the attempt of structure elucidation. Seven potential synthesis markers were tentatively identified, which were not yet reported, except the sum formula of one compound, and which were partly also detected in real case waste samples afterward. The innovative application of the NTS approach using LC-HRMS for the analysis of aqueous amphetamine synthesis waste samples showed its suitability as extension to GC-MS analysis as it was possible to successfully identify seven new potential marker compounds, which are specific either for the conversion of the pre-precursors α-phenylacetoacetonitrile and α-phenylacetoacetamide to benzyl methyl ketone or for the subsequent Leuckart synthesis route after their conversion.


Assuntos
Anfetamina , Anfetamina/análise , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas
2.
Drug Test Anal ; 13(10): 1758-1767, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34272823

RESUMO

Since their first appearance in 2008, synthetic cannabinoid receptor agonists (SCRAs) remain the most popular new psychoactive substances (NPS) in the EU. Following consumption, these drugs and their metabolites are urinary excreted and enter the sewage system enabling the application of wastewater-based epidemiology (WBE). Knowing the fate of target analytes in sewage water is essential for successful application of WBE. This study investigates the stability of several chemically diverse SCRAs and selected human metabolites under sewage conditions utilizing a combination of liquid chromatography-tandem mass spectrometry and high-resolution mass spectrometry (HRMS). Target analytes included SCRAs with indole (5F-PB-22, PB-22 pentanoic acid), indazole (AMB-FUBINACA, 5F-ADB, 5F-ADB dimethylbutanoic acid), carbazole (MDMB-CHMCZCA, EG-018), and γ-carboline (Cumyl-PeGaClone) chemical core structures representing most of the basic core structures that have occurred up to now. Stability tests were performed using wastewater effluent containing 5% activated sludge as inoculum to monitor degradation processes and formation of transformation products (TPs). The majority of investigated SCRAs, excluding the selected human metabolites, was recalcitrant to microbial degradation in sewage systems over a period of 29 days. Their stability was rather controlled by physico-chemical processes like sorption and hydrolysis. Considering a typical hydraulic in-sewer retention time of 24 h, the concentration of AMB-FUBINACA decreased by 90% thus representing the most unstable SCRA investigated in this study. Among the 10 newly identified TPs, three could be considered as relevant markers and should be included into future WBE studies to gain further insight into use and prevalence of SCRAs on the drug market.


Assuntos
Agonistas de Receptores de Canabinoides/análise , Esgotos/análise , Agonistas de Receptores de Canabinoides/metabolismo , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Vigilância Epidemiológica Baseada em Águas Residuárias
3.
Drug Test Anal ; 12(1): 41-52, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31471943

RESUMO

The pre-precursor market and the clandestine production of amphetamine-type stimulants (ATS) has become more diverse in recent years. Besides α-phenylacetoacetonitrile (APAAN) and α-phenylacetoacetamide (APAA), glycidic acid derivatives and methyl α-phenylacetoacetate (MAPA) are gaining importance. This conclusion is based on seizure data of police and customs. However, analytical data are needed to confirm and quantify the actual prevalence of new pre-precursors by elucidating the percentage of seized ATS that have been produced from them. A recent study showed that APAAN use is currently declining, which supports the view that new pre-precursors are being used. In this study, several conversion procedures using different batches of glycidic acid derivatives and a complete Leuckart reaction to produce amphetamine were carried out. The resulting organic phases were analyzed using gas chromatography - mass spectrometry to identify possible marker compounds. Three marker compounds were discovered and characterized using mass spectra and nuclear magnetic resonance spectroscopy. They were identified as phenyl-1-propanone, N-(1-phenylpropyl)formamide and 1-phenylpropan-1-amine. Their prevalence was investigated by searching the markers in an amphetamine impurity profiling database to determine to what extent they occurred in amphetamine samples from recent years. Data from the central German amphetamine profiling database of more than 250 cases were used for this purpose. The yearly occurrence of the three glycidate marker compounds was determined going back as far as 2009, revealing an increasing trend from 2016 on. This article presents experimental proof that APAAN is currently being replaced by other pre-precursors, such as glycidic acid derivatives.


Assuntos
Anfetaminas/química , Estimulantes do Sistema Nervoso Central/química , Compostos de Epóxi/química , Propionatos/química , Anfetaminas/síntese química , Estimulantes do Sistema Nervoso Central/síntese química , Técnicas de Química Sintética , Bases de Dados de Produtos Farmacêuticos , Contaminação de Medicamentos , Compostos de Epóxi/síntese química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Propionatos/síntese química
4.
Drug Test Anal ; 10(9): 1368-1382, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29669395

RESUMO

Chemical waste from the clandestine production of amphetamine is of forensic and environmental importance due to its illegal nature which often leads to dumping into the environment. In this study, 27 aqueous amphetamine waste samples from controlled Leuckart reactions performed in Germany, the Netherlands, and Poland were characterised to increase knowledge about the chemical composition and physicochemical characteristics of such waste. Aqueous waste samples from different reaction steps were analysed to determine characteristic patterns which could be used for classification. Conductivity, pH, density, ionic load, and organic compounds were determined using different analytical methods. Conductivity values ranged from 1 to over 200 mS/cm, pH values from 0 to 14, and densities from 1.0 to 1.3 g/cm3 . A capillary electrophoresis method with contactless conductivity detection (CE-C4 D) was developed and validated to quantify chloride, sulphate, formate, ammonium, and sodium ions which were the most abundant ions in the investigated waste samples. A solid-phase extraction sample preparation was used prior to gas chromatography-mass spectrometry analysis to determine the organic compounds. Using the characterisation data of the known samples, it was possible to assign 16 seized clandestine waste samples from an amphetamine production to the corresponding synthesis step. The data also allowed us to draw conclusions about the synthesis procedure and used chemicals. The presented data and methods could support forensic investigations by showing the probative value of synthesis waste when investigating the illegal production of amphetamine. It can also act as starting point to develop new approaches to tackle the problem of clandestine waste dumping.


Assuntos
Anfetamina/análise , Estimulantes do Sistema Nervoso Central/análise , Drogas Ilícitas/química , Condutividade Elétrica , Eletroforese Capilar , Cromatografia Gasosa-Espectrometria de Massas , Alemanha , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Países Baixos , Polônia , Extração em Fase Sólida , Águas Residuárias/análise
5.
Drug Test Anal ; 10(4): 671-680, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28857492

RESUMO

α-Phenylacetoacetonitrile (APAAN) is one of the most important pre-precursors for amphetamine production in recent years. This assumption is based on seizure data but there is little analytical data available showing how much amphetamine really originated from APAAN. In this study, several syntheses of amphetamine following the Leuckart route were performed starting from different organic compounds including APAAN. The organic phases were analysed using gas chromatography-mass spectrometry (GC-MS) to search for signals caused by possible APAAN markers. Three compounds were discovered, isolated, and based on the performed syntheses it was found that they are highly specific for the use of APAAN. Using mass spectra, high resolution MS and nuclear magnetic resonance (NMR) data the compounds were characterised and identified as 2-phenyl-2-butenenitrile, 3-amino-2-phenyl-2-butenenitrile, and 4-amino-6-methyl-5-phenylpyrimidine. To investigate their significance, they were searched in data from seized amphetamine samples to determine to what extent they were present in illicitly produced amphetamine. Data of more than 580 cases from amphetamine profiling databases in Germany and the Netherlands were used for this purpose. These databases allowed analysis of the yearly occurrence of the markers going back to 2009. The markers revealed a trend that was in agreement with seizure reports and reflected an increasing use of APAAN from 2010 on. This paper presents experimental proof that APAAN is indeed the most important pre-precursor of amphetamine in recent years. It also illustrates how important it is to look for new ways to identify current trends in drug production since such trends can change within a few years.


Assuntos
Acetonitrilas/análise , Anfetamina/análise , Estimulantes do Sistema Nervoso Central/análise , Drogas Ilícitas/análise , Acetonitrilas/síntese química , Anfetamina/síntese química , Estimulantes do Sistema Nervoso Central/síntese química , Bases de Dados de Produtos Farmacêuticos , Contaminação de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Alemanha , Drogas Ilícitas/síntese química , Espectroscopia de Ressonância Magnética , Países Baixos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA