Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiologyopen ; 10(4): e1203, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459556

RESUMO

Streptococcus mitis is a commensal bacterial species of the oral cavity, with the potential for opportunistic pathogenesis. For successful colonization, S. mitis must be able to adhere to surfaces of the oral cavity and survive and adapt to frequently changing environmental conditions. Cyclic-di-AMP (c-di-AMP) is a nucleotide second messenger, involved in the regulation of stress responses and biofilm formation in several bacterial species. Cyclic-di-AMP is produced by diadenylate cyclases and degraded by phosphodiesterases. We have previously shown that in S. mitis, one diadenylate cyclase (CdaA) and at least two phosphodiesterases (Pde1 and Pde2) regulate the intracellular concentration of c-di-AMP. In this study, we utilized S. mitis deletion mutants of cdaA, pde1, and pde2 to analyze the role of c-di-AMP signaling in various stress responses, biofilm formation, and adhesion to eukaryotic cells. Here, we demonstrate that the Δpde1 mutant displayed a tendency toward increased susceptibility to acetic acid at pH 4.0. Deletion of cdaA increases auto-aggregation of S. mitis but reduces biofilm formation on an abiotic surface. These phenotypes are more pronounced under acidic extracellular conditions. Inactivation of pde1 or pde2 reduced the tolerance to ciprofloxacin, and UV radiation and the Δpde1 mutant was more susceptible to Triton X-100, indicating a role for c-di-AMP signaling in responses to DNA damage and cell membrane perturbation. Finally, the Δpde2 mutant displayed a tendency toward a reduced ability to adhere to oral keratinocytes. Taken together, our results indicate an important role for c-di-AMP signaling in cellular processes important for colonization of the mouth.


Assuntos
Adaptação Fisiológica/fisiologia , Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Streptococcus mitis/metabolismo , Ácido Acético/farmacologia , Linhagem Celular Tumoral , Ciprofloxacina/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Queratinócitos/microbiologia , Boca/microbiologia , Octoxinol/farmacologia , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Streptococcus mitis/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia
2.
Microorganisms ; 8(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825526

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) has emerged as an important bacterial signaling molecule that functions both as an intracellular second messenger in bacterial cells and an extracellular ligand involved in bacteria-host cross-talk. In this study, we identify and characterize proteins involved in controlling the c-di-AMP concentration in the oral commensal and opportunistic pathogen Streptococcusmitis (S. mitis). We identified three known types of c-di-AMP turnover proteins in the genome of S. mitis CCUG31611: a CdaA-type diadenylate cyclase as well as GdpP-, and DhhP-type phosphodiesterases. Biochemical analyses of purified proteins demonstrated that CdaA synthesizes c-di-AMP from ATP whereas both phosphodiesterases can utilize c-di-AMP as well as the intermediary metabolite of c-di-AMP hydrolysis 5'-phosphadenylyl-adenosine (pApA) as substrate to generate AMP, albeit at different catalytic efficiency. Using deletion mutants of each of the genes encoding c-di-AMP turnover proteins, we show by high resolution MS/MS that the intracellular concentration of c-di-AMP is increased in deletion mutants of the phosphodiesterases and non-detectable in the cdaA-mutant. We also detected pApA in mutants of the DhhP-type phosphodiesterase. Low and high levels of c-di-AMP were associated with longer and shorter chains of S. mitis, respectively indicating a role in regulation of cell division. The deletion mutant of the DhhP-type phosphodiesterase displayed slow growth and reduced rate of glucose metabolism.

3.
Front Immunol ; 9: 747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713324

RESUMO

Current vaccines against Streptococcus pneumoniae, a bacterial species that afflicts people by causing a wide spectrum of diseases, do not protect against all pneumococcal serotypes. Thus, alternative vaccines to fight pneumococcal infections that target common proteins are under investigation. One promising strategy is to take advantage of immune cross-reactivity between commensal and pathogenic microbes for cross-protection. In this study, we examined the antibody-mediated cross-reactivity between S. pneumoniae and Streptococcus mitis, a commensal species closely related to S. pneumoniae. Western blot analysis showed that rabbit antisera raised against S. mitis reacted with multiple proteins of virulent S. pneumoniae strains (6B, TIGR4, and D39). Rabbit anti-S. pneumoniae IgG antibodies also showed binding to S. mitis antigens. Incubation of rabbit antisera raised against S. mitis with heterologous or homologous bacterial lysates resulted in marked inhibition of the developments of bands in the Western blots. Furthermore, plasma IgG antibodies from adult human volunteers intranasally inoculated with S. pneumoniae 6B revealed enhanced S. mitis-specific IgG titers compared with the pre-inoculation samples. Using an on-chip protein microarray representing a number of selected membrane and extracellular S. pneumoniae proteins, we identified choline-binding protein D (CbpD), cell division protein (FtsH), and manganese ABC transporter or manganese-binding adhesion lipoprotein (PsaA) as common targets of the rabbit IgG antibodies raised against S. mitis or S. pneumoniae. Cumulatively, these findings provide evidence on the antibody-mediated cross-reactivity of proteins from S. mitis and S. pneumoniae, which may have implications for development of effective and wide-range pneumococcal vaccines.


Assuntos
Anticorpos Antibacterianos/imunologia , Imunoglobulina G/imunologia , Streptococcus mitis/imunologia , Streptococcus pneumoniae/imunologia , Adesinas Bacterianas/imunologia , Adulto , Amidoidrolases/imunologia , Animais , Proteínas de Bactérias/imunologia , Reações Cruzadas , Humanos , Lipoproteínas/imunologia , Coelhos , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA