Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Sci Technol ; 2017(3): 636-649, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30016281

RESUMO

The aim of study is removal of atenolol from aqueous solutions by multiwalled carbon nanotubes modified with ozone. The design of the experiment was adopted across four levels with the L16 matrix arrangement. The factors influencing atenolol adsorption include changes in the pH value, contact time, the dose of the modified multiwall carbon nanotube, and the initial concentration of atenolol in the solution; these factors were evaluated along with the extent of their influence on removal efficiency. Data analyses were performed by the Design Expert 6 software. The results indicated that the pH, contact time, adsorbent dose, and the initial concentration were 7, 20 min, 0.15 g/L and 1 mg/L, respectively. In this state, the removal efficiency was calculated to be 75.79%. The maximum adsorption capacity was obtained as 5.05 mg/g under optimal conditions. The data were analyzed using adsorption models obtained from the isotherm fitting tool software. The results suggested that the data had a greater congruence with the Freundlich model (corrected Akaike information criterion = 2.58). Furthermore, the kinetics of the reactions followed pseudo second order kinetics (R2 = 0.95). Based on this study, it can be concluded that modified multiwall carbon nanotubes enjoy high potential and efficiency as adsorbents for the removal of atenolol from aqueous solutions.


Assuntos
Atenolol/química , Nanotubos de Carbono , Ozônio , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Soluções , Eliminação de Resíduos Líquidos/métodos , Água
2.
J Environ Health Sci Eng ; 17(2): 753-765, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32030149

RESUMO

In this study, ibuprofen was removed using a strong nano-clay-composite based on cloisite 15A, PVP and ß-cyclodextrin (CD@clay-PVP) adsorbent through a fixed-bed column system. Chemically modified nano-clay was characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and XRD. Different input situations were evaluated and included adsorbent bed height, initial concentrations, and the impact of the flow rate on the adsorbent. The various mathematical models employed to predict the breakthrough curve and model parameters include Thomas, bed-depth service time (BDST), Yoon-Nelson, and Clark. The characteristics of parameters related to the models were obtained by linear and nonlinear regression to design the process for the columns. Based on error analysis and adsorption conditions, all of the models are identical in describing the adsorption fixed-bed columns.

3.
J Environ Health Sci Eng ; 17(1): 281-293, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31297213

RESUMO

The removal of pharmaceutical pollutants from the aqueous environment is a great environmental concern, mainly due to their diversity, high consumption, and sustainability. In the current study, we aimed to investigate the ability of multi-walled carbon nanotubes (MWCNTs) modified by sodium hypochlorite (NaOCl) and ultrasonic treatment in refining wastewaters contaminated with Atenolol ß-blocker drug (ATN). The physical and structural characteristics of the raw MWCNTs and modified MWCNTs (M-MWCNTs) were analyzed using SEM, TEM, Raman spectroscopy, TGA, and FT-IR techniques. The effects of different parameters, including pH, initial concentration, contact time, and temperature were studied and optimized. Subsequently, the adsorption data were analyzed by several kinetic and equilibrium isotherm equations and modeled by artificial neural network (ANN). Highest ATN removal (87.89%) ((qe,exp = 46.03 mg g-1)) occurred on the adsorbent activated within 10 s of ultrasonication time and NaOCl 30%. Moreover, adsorbent modification significantly improved the ATN removal, so that the removal rate on the raw MWCNTs was about 58%, but in the same conditions, M-MWCNTs removed more than 92% of the adsorbate. The adsorption process reached equilibrium after 90 min under the optimized pH of 6. According to ANN modeling, approximately the whole values dispersed around the 45°line, indicating a good compatibility between the trial results and ANN-predicted data. The modification of MWCNTs in proper ultrasonic power via appropriate concentration of NaOCl solution removed many of the impurities and significantly improved the adsorption performance of MWCNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA