Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 626(7999): 542-548, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109940

RESUMO

The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission.


Assuntos
Desenho de Fármacos , Ligantes , Nanopartículas Metálicas , Pontos Quânticos , Acetona/química , Álcoois/química , Ânions , Compostos de Cálcio/química , Cátions , Coloides/química , Chumbo , Medições Luminescentes , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular , Óxidos/química , Fosfolipídeos/química , Pontos Quânticos/química , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química
2.
Nature ; 626(7999): 535-541, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297126

RESUMO

The brightness of an emitter is ultimately described by Fermi's golden rule, with a radiative rate proportional to its oscillator strength times the local density of photonic states. As the oscillator strength is an intrinsic material property, the quest for ever brighter emission has relied on the local density of photonic states engineering, using dielectric or plasmonic resonators1,2. By contrast, a much less explored avenue is to boost the oscillator strength, and hence the emission rate, using a collective behaviour termed superradiance. Recently, it was proposed3 that the latter can be realized using the giant oscillator-strength transitions of a weakly confined exciton in a quantum well when its coherent motion extends over many unit cells. Here we demonstrate single-photon superradiance in perovskite quantum dots with a sub-100 picosecond radiative decay time, almost as short as the reported exciton coherence time4. The characteristic dependence of radiative rates on the size, composition and temperature of the quantum dot suggests the formation of giant transition dipoles, as confirmed by effective-mass calculations. The results aid in the development of ultrabright, coherent quantum light sources and attest that quantum effects, for example, single-photon emission, persist in nanoparticles ten times larger than the exciton Bohr radius.

3.
Nature ; 593(7860): 535-542, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34040208

RESUMO

Atomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra1-3, their coherent long-range energy transport, their conceptual similarity to natural light-harvesting complexes4,5, and their potential use as light sources and in photovoltaics. Another way of creating versatile and controlled aggregates that exhibit collective phenomena involves the organization of colloidal semiconductor nanocrystals into long-range-ordered superlattices6. Caesium lead halide perovskite nanocrystals7-9 are promising building blocks for such superlattices, owing to the high oscillator strength of bright triplet excitons10, slow dephasing (coherence times of up to 80 picoseconds) and minimal inhomogeneous broadening of emission lines11,12. So far, only single-component superlattices with simple cubic packing have been devised from these nanocrystals13. Here we present perovskite-type (ABO3) binary and ternary nanocrystal superlattices, created via the shape-directed co-assembly of steric-stabilized, highly luminescent cubic CsPbBr3 nanocrystals (which occupy the B and/or O lattice sites), spherical Fe3O4 or NaGdF4 nanocrystals (A sites) and truncated-cuboid PbS nanocrystals (B sites). These ABO3 superlattices, as well as the binary NaCl and AlB2 superlattice structures that we demonstrate, exhibit a high degree of orientational ordering of the CsPbBr3 nanocubes. They also exhibit superfluorescence-a collective emission that results in a burst of photons with ultrafast radiative decay (22 picoseconds) that could be tailored for use in ultrabright (quantum) light sources. Our work paves the way for further exploration of complex, ordered and functionally useful perovskite mesostructures.

4.
Nature ; 563(7733): 671-675, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30405237

RESUMO

An ensemble of emitters can behave very differently from its individual constituents when they interact coherently via a common light field. After excitation of such an ensemble, collective coupling can give rise to a many-body quantum phenomenon that results in short, intense bursts of light-so-called superfluorescence1. Because this phenomenon requires a fine balance of interactions between the emitters and their decoupling from the environment, together with close identity of the individual emitters, superfluorescence has thus far been observed only in a limited number of systems, such as certain atomic and molecular gases and a few solid-state systems2-7. The generation of superfluorescent light in colloidal nanocrystals (which are bright photonic sources practically suited for optoelectronics8,9) has been precluded by inhomogeneous emission broadening, low oscillator strength, and fast exciton dephasing. Here we show that caesium lead halide (CsPbX3, X = Cl, Br) perovskite nanocrystals10-13 that are self-organized into highly ordered three-dimensional superlattices exhibit key signatures of superfluorescence. These are dynamically red-shifted emission with more than 20-fold accelerated radiative decay, extension of the first-order coherence time by more than a factor of four, photon bunching, and delayed emission pulses with Burnham-Chiao ringing behaviour14 at high excitation density. These mesoscopically extended coherent states could be used to boost the performance of opto-electronic devices15 and enable entangled multi-photon quantum light sources16,17.

5.
Nature ; 553(7687): 189-193, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29323292

RESUMO

Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund's rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the 'dark exciton'. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

6.
Nano Lett ; 22(9): 3751-3760, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35467890

RESUMO

Attaining pure single-photon emission is key for many quantum technologies, from optical quantum computing to quantum key distribution and quantum imaging. The past 20 years have seen the development of several solid-state quantum emitters, but most of them require highly sophisticated techniques (e.g., ultrahigh vacuum growth methods and cryostats for low-temperature operation). The system complexity may be significantly reduced by employing quantum emitters capable of working at room temperature. Here, we present a systematic study across ∼170 photostable single CsPbX3 (X: Br and I) colloidal quantum dots (QDs) of different sizes and compositions, unveiling that increasing quantum confinement is an effective strategy for maximizing single-photon purity due to the suppressed biexciton quantum yield. Leveraging the latter, we achieve 98% single-photon purity (g(2)(0) as low as 2%) from a cavity-free, nonresonantly excited single 6.6 nm CsPbI3 QDs, showcasing the great potential of CsPbX3 QDs as room-temperature highly pure single-photon sources for quantum technologies.

7.
Nano Lett ; 19(6): 3648-3653, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117751

RESUMO

Lead-halide perovskite APbX3 (A = Cs or organic cation; X = Cl, Br, I) nanocrystals (NCs) are the subject of intense research due to their exceptional characteristics as both classical and quantum light sources. Many challenges often faced with this material class concern the long-term optical stability, a serious intrinsic issue connected with the labile and polar crystal structure of APbX3 compounds. When conducting spectroscopy at a single particle level, due to the highly enhanced contaminants (e.g., water molecules, oxygen) over the NC ratio, deterioration of NC optical properties occurs within tens of seconds with typically used excitation power densities (1-100 W/cm2) and in ambient conditions. Here, we demonstrate that choosing a suitable polymer matrix is of paramount importance for obtaining stable spectra from a single NC and for suppressing the dynamic photoluminescence blueshift. In particular, polystyrene (PS), the most hydrophobic among four tested polymers, leads to the best optical stability, one to two orders of magnitude higher than that obtained with poly(methyl methacrylate), a common polymeric encapsulant containing polar ester groups. Molecular mechanics simulations based on a force-field approximation corroborate the hypothesis that PS affords for a denser molecular packing at the NC surface. These findings underscore the often-neglected role of the sample preparation methodologies for the assessment of the optical properties of perovskite NCs at a single-particle level and guide the further design of robust single photon sources.

8.
J Am Chem Soc ; 141(50): 19839-19849, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31763836

RESUMO

Attaining thermodynamic stability of colloids in a broad range of concentrations has long been a major thrust in the field of colloidal ligand-capped semiconductor nanocrystals (NCs). This challenge is particularly pressing for the novel NCs of cesium lead halide perovskites (CsPbX3; X = Cl, Br) owing to their highly dynamic and labile surfaces. Herein, we demonstrate that soy lecithin, a mass-produced natural phospholipid, serves as a tightly binding surface-capping ligand suited for a high-reaction yield synthesis of CsPbX3 NCs (6-10 nm) and allowing for long-term retention of the colloidal and structural integrity of CsPbX3 NCs in a broad range of concentrations-from a few ng/mL to >400 mg/mL (inorganic core mass). The high colloidal stability achieved with this long-chain zwitterionic ligand can be rationalized with the Alexander-De Gennes model that considers the increased particle-particle repulsion due to branched chains and ligand polydispersity. The versatility and immense practical utility of such colloids is showcased by the single NC spectroscopy on ultradilute samples and, conversely, by obtaining micrometer-thick, optically homogeneous dense NC films in a single spin-coating step from ultraconcentrated colloids.

9.
Nat Mater ; 17(5): 394-405, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29459748

RESUMO

Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a 'soft' and predominantly ionic lattice, and their optical and electronic properties are highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored.

10.
Nano Lett ; 18(12): 7546-7551, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30407011

RESUMO

Fully inorganic cesium lead halide perovskite nanocrystals (NCs) have shown to exhibit outstanding optical properties such as wide spectral tunability, high quantum yield, high oscillator strength as well as blinking-free single photon emission, and low spectral diffusion. Here, we report measurements of the coherent and incoherent exciton dynamics on the 100 fs to 10 ns time scale, determining dephasing and density decay rates in these NCs. The experiments are performed on CsPbBr2Cl NCs using transient resonant three-pulse four-wave mixing (FWM) in heterodyne detection at temperatures ranging from 5 to 50 K. We found a low-temperature exciton dephasing time of 24.5 ± 1.0 ps, inferred from the decay of the photon-echo amplitude at 5 K, corresponding to a homogeneous line width (fwhm) of 54 ± 5 µeV. Furthermore, oscillations in the photon-echo signal on a picosecond time scale are observed and attributed to coherent coupling of the exciton to a quantized phonon mode with 3.45 meV energy.

11.
J Am Chem Soc ; 140(11): 3850-3853, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29502407

RESUMO

Two-dimensional hybrid organic-inorganic lead halides perovskite-type compounds have attracted immense scientific interest due to their remarkable optoelectronic properties and tailorable crystal structures. In this work, we present a new layered hybrid lead halide, namely [CH(NH2)2][C(NH2)3]PbI4, wherein puckered lead-iodide layers are separated by two small and stable organic cations: formamidinium, CH(NH2)2+, and guanidinium, C(NH2)3+. This perovskite is thermally stable up to 255 °C, exhibits room-temperature photoluminescence in the red region with a quantum yield of 3.5%, and is photoconductive. This study highlights a vast structural diversity that exists in the compositional space typically used in perovskite photovoltaics.

12.
Nat Mater ; 21(11): 1219-1220, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36075968
13.
Angew Chem Int Ed Engl ; 57(35): 11329-11333, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29999575

RESUMO

The spatial localization of charge carriers to promote the formation of bound excitons and concomitantly enhance radiative recombination has long been a goal for luminescent semiconductors. Zero-dimensional materials structurally impose carrier localization and result in the formation of localized Frenkel excitons. Now the fully inorganic, perovskite-derived zero-dimensional SnII material Cs4 SnBr6 is presented that exhibits room-temperature broad-band photoluminescence centered at 540 nm with a quantum yield (QY) of 15±5 %. A series of analogous compositions following the general formula Cs4-x Ax Sn(Br1-y Iy )6 (A=Rb, K; x≤1, y≤1) can be prepared. The emission of these materials ranges from 500 nm to 620 nm with the possibility to compositionally tune the Stokes shift and the self-trapped exciton emission bands.

14.
Nat Mater ; 20(10): 1449, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389826
16.
ACS Nano ; 18(14): 9997-10007, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547379

RESUMO

Colloidal quantum dots (QDs) are promising regenerable photoredox catalysts offering broadly tunable redox potentials along with high absorption coefficients. QDs have thus far been examined for various organic transformations, water splitting, and CO2 reduction. Vast opportunities emerge from coupling QDs with other homogeneous catalysts, such as transition metal complexes or organic dyes, into hybrid nanoassemblies exploiting energy transfer (ET), leveraging a large absorption cross-section of QDs and long-lived triplet states of cocatalysts. However, a thorough understanding and further engineering of the complex operational mechanisms of hybrid nanoassemblies require simultaneously controlling the surface chemistry of the QDs and probing dynamics at sufficient spatiotemporal resolution. Here, we probe the ET from single lead halide perovskite QDs, capped by alkylphospholipid ligands, to organic dye molecules employing single-particle photoluminescence spectroscopy with single-photon resolution. We identify a Förster-type ET by spatial, temporal, and photon-photon correlations in the QD and dye emission. Discrete quenching steps in the acceptor emission reveal stochastic photobleaching events of individual organic dyes, allowing a precise quantification of the transfer efficiency, which is >70% for QD-dye complexes with strong donor-acceptor spectral overlap. Our work explores the processes occurring at the QD/molecule interface and demonstrates the feasibility of sensitizing organic photocatalysts with QDs.

17.
ACS Nano ; 18(26): 17218-17227, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904261

RESUMO

Lead halide perovskite quantum dots (QDs), the latest generation of the colloidal QD family, exhibit outstanding optical properties, which are now exploited as both classical and quantum light sources. Most of their rather exceptional properties are related to the peculiar exciton fine-structure of band-edge states, which can support unique bright triplet excitons. The degeneracy of the bright triplet excitons is lifted with energetic splitting in the order of millielectronvolts, which can be resolved by the photoluminescence (PL) measurements of single QDs at cryogenic temperatures. Each bright exciton fine-structure-state (FSS) exhibits a dominantly linear polarization, in line with several theoretical models based on the sole crystal field, exchange interaction, and shape anisotropy. Here, we show that in addition to a high degree of linear polarization, the individual exciton FSS can exhibit a non-negligible degree of circular polarization even without external magnetic fields by investigating the four Stokes parameters of the exciton fine-structure in individual CsPbBr3 QDs through Stokes polarimetric measurements. We observe a degree of circular polarization up to ∼38%, which could not be detected by using the conventional polarimetric technique. In addition, we found a consistent transition from left- to right-hand circular polarization within the fine-structure triplet manifold, which was observed in magnetic-field-dependent experiments. Our optical investigation provides deeper insights into the nature of the exciton fine structures and thereby drives the yet-incomplete understanding of the unique photophysical properties of this class of QDs for the benefit of future applications in chiral quantum optics.

18.
ACS Nano ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320982

RESUMO

The compositional engineering of lead-halide perovskite nanocrystals (NCs) via the A-site cation represents a lever to fine-tune their structural and electronic properties. However, the presently available chemical space remains minimal since, thus far, only three A-site cations have been reported to favor the formation of stable lead-halide perovskite NCs, i.e., Cs+, formamidinium (FA), and methylammonium (MA). Inspired by recent reports on bulk single crystals with aziridinium (AZ) as the A-site cation, we present a facile colloidal synthesis of AZPbBr3 NCs with a narrow size distribution and size tunability down to 4 nm, producing quantum dots (QDs) in the regime of strong quantum confinement. NMR and Raman spectroscopies confirm the stabilization of the AZ cations in the locally distorted cubic structure. AZPbBr3 QDs exhibit bright photoluminescence with quantum efficiencies of up to 80%. Stabilized with cationic and zwitterionic capping ligands, single AZPbBr3 QDs exhibit stable single-photon emission, which is another essential attribute of QDs. In particular, didodecyldimethylammonium bromide and 2-octyldodecyl-phosphoethanolamine ligands afford AZPbBr3 QDs with high spectral stability at both room and cryogenic temperatures, reduced blinking with a characteristic ON fraction larger than 85%, and high single-photon purity (g(2)(0) = 0.1), all comparable to the best-reported values for MAPbBr3 and FAPbBr3 QDs of the same size.

19.
ACS Nano ; 18(11): 8423-8436, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446635

RESUMO

Nanocrystal superlattices (NC SLs) have long been sought as promising metamaterials, with nanoscale-engineered properties arising from collective and synergistic effects among the constituent building blocks. Lead halide perovskite (LHP) NCs come across as outstanding candidates for SL design, as they demonstrate collective light emission, known as superfluorescence, in single- and multicomponent SLs. Thus far, LHP NCs have only been assembled in single-component SLs or coassembled with dielectric NC building blocks acting solely as spacers between luminescent NCs. Here, we report the formation of multicomponent LHP NC-only SLs, i.e., using only CsPbBr3 NCs of different sizes as building blocks. The structural diversity of the obtained SLs encompasses the ABO6, ABO3, and NaCl structure types, all of which contain orientationally and positionally locked NCs. For the selected model system, the ABO6-type SL, we observed efficient NC coupling and Förster-like energy transfer from strongly confined 5.3 nm CsPbBr3 NCs to weakly confined 17.6 nm CsPbBr3 NCs, along with characteristic superfluorescence features at cryogenic temperatures. Spatiotemporal exciton dynamics measurements reveal that binary SLs exhibit enhanced exciton diffusivity compared to single-component NC assemblies across the entire temperature range (from 5 to 298 K). The observed coherent and incoherent NC coupling and controllable excitonic transport within the solid NC SLs hold promise for applications in quantum optoelectronic devices.

20.
Nat Phys ; 20(1): 47-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261834

RESUMO

Understanding the origin of electron-phonon coupling in lead halide perovskites is key to interpreting and leveraging their optical and electronic properties. Here we show that photoexcitation drives a reduction of the lead-halide-lead bond angles, a result of deformation potential coupling to low-energy optical phonons. We accomplish this by performing femtosecond-resolved, optical-pump-electron-diffraction-probe measurements to quantify the lattice reorganization occurring as a result of photoexcitation in nanocrystals of FAPbBr3. Our results indicate a stronger coupling in FAPbBr3 than CsPbBr3. We attribute the enhanced coupling in FAPbBr3 to its disordered crystal structure, which persists down to cryogenic temperatures. We find the reorganizations induced by each exciton in a multi-excitonic state constructively interfere, giving rise to a coupling strength that scales quadratically with the exciton number. This superlinear scaling induces phonon-mediated attractive interactions between excitations in lead halide perovskites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA